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Abstract

Teaching machines to understand the semantics of documents is one of the most difficult
and long-standing challenges in the Natural Language Processing (NLP) community. As a
core task in NLP, the coreference resolution task aims to group all mentions that refer to
the same real-world entity. With the development of deep learning techniques, neural end-
to-end coreference resolution models have become dominant and conventional wisdom is
that hand-crafted features derived from both syntax and semantics are redundant, as they
are believed to be automatically captured in document representations by neural models.
However, this claim has not been thoroughly tested. Therefore, in this thesis, we focus on
evaluating the impact of incorporating external syntax and semantics for neural coreference
resolution models.

This thesis consists of two parts. In the first part, we present a heterogeneous graph-
based model to incorporate syntactic and semantic structures of sentences. The proposed
graph contains a syntactic sub-graph where tokens are connected based on a dependency
tree and a semantic sub-graph that contains arguments and predicates as nodes and se-
mantic role labels as edges. In the second part of this thesis, we build a graph based on
the structures of constituent parse trees. We argue that although most leading systems use
only dependency trees, constituent trees also encode important information, such as ex-
plicit span-boundary signals, extra linguistic labels and hierarchical structures useful for
detecting anaphora. In order to fully exploit constituent parse tree structures, we further in-
troduce edges with different orders and interpret tree structures from different views. Novel
information propagation mechanisms are designed in both parts to enable information flow
among different nodes in the graph.

The methodologies employed in both parts of this thesis are novel. They deliver con-
vincing and promising results supported by our thorough and large-scale experiments on
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standard benchmark datasets across different languages, and new state-of-the-art perfor-
mance is achieved on a standard Chinese coreference resolution dataset.
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Notations

We provide a brief summary of some mathematical notations used throughout this thesis
(unless stated otherwise).

i, j: both i and j are mention spans consisting of one or more tokens, where
i = [starti, endi], j = [startj, endj] and start and end means the token indices
of endpoints of mention spans.

Yi = {ε, 1, . . . , c− 1}: a list of associated candidate antecedent mentions of a
given mention i

sm(i): the predicted mention score of a given mention i

c(i, j): the coarse pairwise coreference score between mention i and j

sc(i, j): the fine-grained pairwise coreference score between a pair of mentions
i and j

s(i, j): the final pairwise coreference score between mention i and j

Ni: the set of neighbour nodes of a given node i
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Chapter 1

Introduction

Coreference Resolution, the task of grouping all text mention spans referring to the same
real-world entity, has been a core task in the research field of the Natural Language Pro-
cessing (NLP) community since the 1960s. An example for illustrating this task is shown
in Figure 1.1. In this example, we have a dialogue between two speakers. Text spans, such
as both of you and I, which consist of one or more tokens, are defined as mentions. Here
we have you refers I because they represent the same person, and we say you is anaphoric
and I is the antecedent of you. We can also have more complex clusters involving arbitrary
mention spans, such as the coreference cluster {both of you, us and we}.

Despite being intensively investigated for about 60 years, coreference resolution task is
still far from being resolved due to the difficultly derived naturally. Below is an example
from the Winograd Schema Challenge dataset (Levesque et al., 2012), which can better
demonstrate the difficulty of the task:

The city councilmen refused the demonstrators a permit because they feared
violence.
The city councilmen refused the demonstrators a permit because they advo-
cated violence.

Determining the correct reference of they requires understanding that the second clause
after because serves as the explanation for the first clause, and also that city councilmen

are more likely to fear violence. In contrast, demonstrators are more likely to advocate
violence, which requires the model to have access to external commonsense knowledge

1



CHAPTER 1. INTRODUCTION 2

It’s because of what both of you are doing to have things change.

I think that’s what’s… Go ahead Linda.

Thanks goes to you and to the media to help us.

Absolutely.

Obviously we couldn’t seem loud enough to bring 

the attention, so our hat is off to all of you as well.

Figure 1.1: An example for coreference resolution task. Mentions in the same coreference
cluster are presented with the same colour (Example from Wiseman et al. (2016)).

about the world. By contrast, human audiences typically have few problems identifying
the correct antecedent of the pronoun they by utilising background knowledge.

From the above example, we can see that the difficulty of the coreference resolution task
mainly derives from the intensive background knowledge required for reasoning, which is
typically difficult for machines to acquire. Despite the difficulty, coreference resolution
plays an essential role in aggregating entity-related information when interpreting docu-
ment texts, which is crucial for a variety of higher-level NLP tasks including relation extrac-
tion (Luan et al., 2019; Wadden et al., 2019), machine reading comprehension (Dasigi et al.,
2019), document summarisation (Xu et al., 2020) and neural machine translation (Sto-
janovski and Fraser, 2018).

The focus of coreference resolution research has undergone three main stages, namely
heuristics and rule-based methods, machine learning approaches, and end-to-end neural
models. Like many other NLP tasks, the coreference resolution task was first dealt with
by designing sophisticated rules by taking inspiration from various knowledge resources
and inference procedures. Computational theories of discourse, including focusing (Grosz,
1977) and centering (Grosz et al., 1983, 1995) have largely driven the development in
this stage (the 1970s and 1980s). The research community gradually started focusing on
statistical machine learning approaches since the 1990s, partially due to the wide appli-
cations of statistical methods in the NLP community and other Artificial Intelligence ar-
eas. Another reason is the public availability of some small and moderate-sized annotated
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coreference corpus (MUC-6 (muc, 1995) and MUC-7 (muc, 1998)). Learning-based meth-
ods in this stage mainly employed hand-designed features derived from linguistics and
external knowledge sources to train supervised models. Three main model frameworks
have been developed, namely mention-pair (Soon et al., 2001; Ng and Cardie, 2002b),
mention-ranking (Iida et al., 2003; Yang et al., 2003; Denis and Baldridge, 2008) and entity-
based (Luo et al., 2004; Yang et al., 2004; Rahman and Ng, 2009). The hybrid of rule-based
and learning-based methods has become popular around the 2010s with the advent of multi-
pass sieve-based models (Raghunathan et al., 2010; Lee et al., 2011; LEE et al., 2017),
which outperformed the learning-based counterparts on large-sized corpus (Pradhan et al.,
2011, 2012). The drastic shift to neural model-based methods began in 2017 when the first
end-to-end neural coreference resolution model (Lee et al., 2017) has proposed. Various
improved work has been proposed (Lee et al., 2018; Kantor and Globerson, 2019; Joshi
et al., 2019, 2020; Wu et al., 2020) and impressive progress has been made in recent years,
with a promising improvement of 15.9% on the standard OntoNotes 5.0 English benchmark
dataset over the past three years.

Traditional learning-based methods depend heavily on various hand-engineered fea-
tures derived from both syntactic and semantic patterns. In contrast, neural methods aim
to design appropriate model architectures to enable end-to-end training without too many
human interventions, resulting in significantly less reliance on external features. However,
whether conventional wisdom employed in learning-based methods can benefit strong end-
to-end neural models remains unknown.

This thesis aims to investigate whether various kinds of syntax and semantics widely
used by early statistical machine learning methods can show positive impacts on neural
coreference resolution models trained in an end-to-end fashion. We show that leveraging
external syntax and semantics with our carefully designed graph-based methods can be
highly effective and show promising results.

In this chapter, we briefly discuss the motivation behind our research and propose re-
search questions in Section 1.1. Then we finish this chapter by outlining the thesis structure
in Section 1.2.
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det

The Mainland Affairs Council and several groups co-sponsored a seminarnon-governmental on economic relations with mainland China

nn nn

nsubj

cc

amod

punct

conj

det

dobj

prep amod

pobj

prep nn

pobj

Figure 1.2: An example sentence with mention spans and annotated dependencies in the
OntoNotes 5.0 English dataset

1.1 Motivation

1.1.1 Syntax

Syntactic features derived from syntactic parse trees are widely used in early learning-based
methods. Ge et al. (1998) proposes Hobbs distances to encode the rank of candidate an-
tecedents of a given pronoun based on Hobbs’s syntax parse tree based pronoun resolution
algorithm (Hobbs, 1978). Bergsma and Lin (2006) implements path-related features based
on syntactic parse trees, where the sequence of words and dependency labels in the path
between a given pronoun and its candidate antecedent is utilised. Statistical information
collected from such paths is used to measuring the likelihood of being coreferent for the
pronoun and antecedent. Constituent and dependency syntactic information has also been
applied in the anaphoricity determination task by using tree-kernel-based methods: Kong
et al. (2010) and Kong and Zhou (2011) design various kinds of path-related features such
as root path between the root node and current mention. All previous work shows that care-
fully designed features derived from both constituent and dependency syntax reveal strong
signals for resolving coreference, which motivates our research to a large extent.

Dependency syntax captures the bilexical relations between pairs of words and non-
linear structures of sentences. Moreover, some words that form valid mention spans have
associated complete subtree embedded in the graph from our observation. Considering
the dependency tree presented in Figure 1.2. We can see that the mention span mainland

China is a complete unit, and it should form a subtree in this example. The same applies
to the other two mentions The Mainland Affairs Council and several non-governmental

groups and a seminar on economic relations with mainland China. This means that the
dependency tree implicitly encodes the information for identifying mention spans. We
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Figure 1.3: An example of constituent parse tree in the OntoNotes 5.0 English dataset

suspect that this kind of strong relationship can be helpful to the mention detection task,
which in turn benefits the overall performance of coreference resolution.

Unlike the dependency tree, which models the relationships between individual words,
the constituent parse tree captures the syntactic structure in the form of nested multi-word
phrases, and phrase structures are labelled with linguistic tags such as part-of-speech and
phrase tags. Since they model the relationships of different semantic units, we suspect that
these two kinds of syntactic structures may behave quite differently in capturing different
aspects of syntactic phenomena. Figure 1.3 shows an example of constituent parse tree.
We can see that all those three spans mentioned above have matched constituent phrases
in the parse tree. Moreover, the constituent parse tree structures also provide the boundary
information for each phrase. By contrast, such information is either implicitly encoded or
not revealed in the dependency tree. On the other hand, we find that gold mentions on
the OntoNotes 5.0 English dataset map to a limited range of constituent phrases and POS
tags. Therefore, we believe constituent tree structures capture signals for mention detection
more effectively and explicitly, which we suspect is more helpful to the overall coreference
resolution task.

Therefore, by drawing inspirations from previous work and our observations from both
dependency and constituent parse trees, we argue that leveraging such syntactic structures
can be highly effective for the coreference resolution task. The primary research challenge
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is how we can make use of these structures to improve our neural coreference resolution
systems. We ask the following research questions:

• We can identify valid mention spans from the subtree embedded in the dependency
tree and phrases in the constituent tree. Can we impose certain constraints on the
neural coreference resolution model to filter out invalid candidate mentions, thereby
reducing spans that are noisy for the mention-linking stage as many as possible?

• Besides, the structures of both syntactic trees are useful and reveal signals for coref-
erence resolution. How can we effectively encode the complete structures to enable
our model to take full advantage of such structural information when resolving coref-
erences?

1.1.2 Semantics

Semantic features have also been intensively investigated in the literature. Selectional pref-
erence, which prefers to choose the candidate antecedent sharing the same verb and same
semantic role with the pronoun to be resolved, has been widely employed in early days (Da-
gan and Itai, 1990; Kehler et al., 2004). WordNet and Wikipedia have also been used
to derive semantic relatedness and compatibility between pairs of mentions (Kübler and
Zhekova, 2016; Ponzetto and Strube, 2006a). Semantic role features were also utilised by
taking inspiration from semantic parallelism heuristics (Ponzetto and Strube, 2006a,b) or
employing the centering theory from the semantic perspective (Kong et al., 2009).

In particular, Semantic Role Labelling (SRL) models the semantic roles of arguments. It
provides semantic relationships between arguments and predicates, revealing the semantics
of Who did what to whom, which allows us to capture the information of document-level
event descriptions. Ponzetto and Strube (2006a) shows that SRL features can be used to link
two referring mentions correctly in some scenarios by employing the semantic parallelism
heuristic:

A state commission of inquiry into the sinking of the Kursk will convene in
Moscow on Wednesday, the Interfax news agency reported. It said that the
diving operation will be completed by the end of next week.

From above example (from Ponzetto and Strube (2006a)), we can see that the Interfax news

agency is the argument of the predicate reported, and It is the argument of the predicate
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said. By knowing reported and it conveys similar semantics, we could easily link It to the

Interfax news agency rather than Moscow.
Therefore, the deep semantics captured by SRL can reveal strong signals for corefer-

ence reasoning in some scenarios. But unlike the syntactic trees, which have clear struc-
tures, SRL only models the relations between arguments and predicates. How to build a
tree or graph based on SRL features remains a challenge. We ask the following questions:

• How can we design appropriate methods to organize SRL features into graph or tree
structures so that different arguments and predicates can interact with each other to
improve coreference reasoning?

• Once the SRL feature-based structures are well designed, how can we model such
structures to incorporate useful information effectively for coreference resolution?

1.2 Thesis Outline

The structure of this thesis is organized as follows:

In Chapter 2, we first give a brief description of different types of coreference, widely-used
coreference datasets and standard evaluation metrics. Next, a thorough overview of
the history and recent development in the field of coreference resolution are pre-
sented, where we give priority to the neural model-based methods. The challenges,
strengths and weaknesses of different methods are well discussed and compared.

In Chapter 3, we explore the utility of dependency syntax and SRL semantics for neural
entity coreference resolution task, where a heterogeneous graph consisting of seman-
tic units with different granularity is constructed and a novel information propagation
mechanism is designed to effectively capture coreference-related syntactic and se-
mantic information. Our thorough experiments on two standard benchmark datasets
demonstrate the proposed method is highly effective and the leveraged external syn-
tax and semantics are consistently helpful even in the era of deep learning.

In Chapter 4, we further show that leveraging syntax in the form of constituent parsing
trees with edges of longer ranges and dual graphs can bring significant benefits. A
novel way of representing constituent non-terminal nodes is proposed, and effective
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information propagation mechanisms are employed to benefit coreference reasoning.
Our large-scale experiments on datasets with two languages confirm the effectiveness
of our proposed model across different languages, and we establish new state-of-the-
art performance on the Chinese portion of OntoNotes 5.0 benchmark.

In Chapter 5, we summarise the findings of this thesis and discuss possible avenues for
future work.



Chapter 2

Literature Review

To have a comprehensive survey of current literature, we provide a detailed summarisation
of the development of coreference resolution task, with the focus on neural models, in this
chapter. Besides, we also present the brief description of different types of coreference,
widely-used coreference resolution datasets and evaluation metrics.

2.1 Coreference Types

Hirst (1981) and Lappin and Leass (1994) have classified coreference into a variety of
types. In this section, we present a brief outline of a few types of coreference based on
their work.

Zero Anaphora This type of anaphora uses the gap between phrases or clauses to refer
back to the antecedent. This is a special case in pro-dropped languages, such as Chinese
and Japanese, where the anaphoric expressions are eliminated.

An example is shown in Figure 2.1. We use φ to represent the zero pronouns. In this
example, we can assign the mention the government that appears in earlier contexts to be
the antecedent of φ2 while there are no such mentions for φ1.

Pronominal Anaphora Pronominal anaphora is the most common type of coreference,
which is realised by using pronouns referring back to a mention in preceding contexts.1

1The term preceding contexts means document texts appearing before a given mention.

9
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这     次            地震            φ1     有       一些       房屋         塌           的 ,  这     里面  如果  有  

In this earthquake φ1 some rooms collapsed, if there exist some room quality issues, φ2 will
need to call to account.

This times earthquake has some rooms collapse this insideof has

house construction of quality issues be investigate duty of

if

            建房                   的        质量          问题 ，  φ2     是      要          追究        责任    的 。

must

Figure 2.1: An example for zero pronoun. The interlinear gloss text and its English trans-
lation are presented.

Furthermore, the referent antecedent can be classified into three types: definite, indefinite
and adjective. Definite means the pronoun refers to a specific and unique entity (e.g., the
tower), while indefinite means that the referred entity is not described with a determinant
(e.g., tourists). Adjective indicates the referred mention is described with an adjective (e.g.,
beautiful city skylines).

Non-Anaphoric Mentions or Singletons In some datasets, the non-anaphoric mentions
or singletons, which are not coreferent with any previously mentioned entity (antecedent),
are annotated. The most common one is the pleonastic pronoun it (e.g., It is rainy today.).
For other general mention spans, singleton means a certain entity only appears once and is
never mentioned in the subsequent document texts.2

Split Anaphora This type of coreference means that an anaphoric mention can refer back
to more than one antecedent.

John likes green, Mary likes blue, but Tom likes both colours.

In this example, we can see that the mention both colours refers backs to two antecedents
green and blue. Such cases are not annotated on the OntoNotes dataset.

Generics Generics means a specific mention and its antecedent does not necessarily refer
to the same real-world entity. The given mention or its antecedent also may not correspond
to a specific entity.

2The term subsequent document texts means document texts appearing after a given mention
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Meetings are most productive when they are held in the morning. Those meet-

ings, however, generally have the worst attendance.

In this example (borrowed from Pradhan et al. (2012)), the mention Meetings does not refer
to a specific meeting but is treated as a generic term. In other words, it does not correspond
to a certain real-world entity. Also, Those meetings and Meetings do not strictly refer to the
same real-world entity (Those meetings is actually the subset of Meetings).

2.2 Datasets

CoNLL-2012 The CoNLL-2012 shared task (Pradhan et al., 2012) contains a standard
document-level coreference resolution dataset based on the OntoNotes Release 5.0.34 The
documents are from telephone conversations, newswire, newsgroups, broadcast news, we-
blogs, broadcast conversation, and religious texts. This dataset annotates coreference links
of noun phrases (e.g., named or definite nominal mentions), verbs, pronouns, generic men-
tions, proper pre-modifiers, copular verbs, small clauses, temporal expressions and appos-
itives. Three metrics: MUC (Vilain et al., 1995), B-CUBED (B3) (Bagga and Baldwin,
1998) and Entity-based CEAF (CEAFφ4) (Luo, 2005) (see §2.3 for details) and their aver-
age F1 score are commonly used for model performance evaluation.

GAP GAP (Webster et al., 2018) is designed for identifying ambiguous gender pro-
nouns.5 Each instance is a short document with two candidates. Each candidate is as-
sociated with a boolean value representing whether it is the correct reference of a given
gendered pronoun. Models are evaluated by overall F1 score, F1 scores by gender (Mascu-
line: FM

1 and Feminine: F F
1 ) and gender bias (the ratio of FM

1 to F F
1 ).

ACE 2005 (Walker and Consortium, 2005) dataset is a multilingual dataset consist of
three languages, namely English, Chinese and Arabic. It contains annotations for Name
Entity Recognition (NER), Relation Extraction (RE), and Entity and Event Coreference
Resolution. It has been extensively evaluated by various neural NER and RE models and

3https://catalog.ldc.upenn.edu/LDC2013T19
4We use CoNLL-2012 shared task and OntoNotes 5.0 dataset interchangeably throughout this thesis.
5https://github.com/google-research-datasets/gap-coreference

https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/google-research-datasets/gap-coreference
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serves as a standard benchmark for these two tasks. In contrast, it has been forgotten by
many modern neural coreference resolution models after the release of the OntoNotes 5.0
benchmark. Like the CoNLL-2012 dataset, the documents are sampled from broadcast
conversation, broadcast news, conversational telephone speech, newswire, discussion fo-
rums, and weblogs. Coreference links among proper names, nominals and pronouns are
annotated. Unlike the CoNLL-2012 dataset, coreferent mentions should be with the same
entity type. Besides, singleton mentions are annotated, and speaker information is not
available. For evaluation, it uses the same metrics as CoNLL-2012, but singleton mentions
are included in the evaluation phase.

PreCo (Chen et al., 2018) is a large-scale English dataset for coreference resolution,
containing 38K documents and 12.5M words mostly from English-speaking preschoolers’
vocabulary.6 The documents are mainly collected from reading comprehension tests for
Chinese High-school students. Compared to OntoNotes 5.0 and ACE05, the vocabulary of
PreCo is much simpler, and models can generally achieve higher average F1 score. Similar
to ACE05, singleton mentions are also included. Although Preco contains more than ten
times of documents than OntoNotes 5.0, it has been less evaluated by recently proposed
models.

Datasets for Evaluation In this thesis, we mainly evaluate our proposed methods on the
OntoNotes 5.0 English shared task and ACE 2005 English dataset. In order to test the
generality of our methods across different languages, the OntoNotes 5.0 Chinese dataset is
also used in evaluation.

2.3 Evaluation Metrics

Three popularly used evaluation metrics (MUC, B-CUBED, CEAF) of the general corefer-
ence resolution task are discussed in this section, including their advantages and disadvan-
tages.

A coreference cluster is defined as C, and |C| is the number of mentions in the cluster.
The term key entities (clusters) refer to gold coreference clusters, while response entities

6https://preschool-lab.github.io/PreCo/

https://preschool-lab.github.io/PreCo/
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(clusters) refer to predicted entities. K(d) and S(d) are the set of gold and predicted coref-
erence clusters, respectively. |K(d)| and |S(d)| represent the number of gold and predicted
clusters in a single document, respectively.7

2.3.1 MUC

MUC is a coreference link based metric. It computes the minimum number of insertions
and deletes required to make predicted coreference clusters identical to gold ones. The
intersection between gold and predicted clusters is defined as:

P (Sj) =
{
Ci
j : i = 1, 2, . . . , |K(d)|

}
(2.1)

where Ci
j is Sj ∩ Ki. Then the common links between gold and predicted clusters are

defined as:

c(K(d), S(d)) =

|S(d)|∑
j=1

K(d)|∑
i=1

wc
(
Ci
j

)
(2.2)

wc(C
i
j) =

{
0 |Ci

j| = 0

|Ci
j| − 1 |Ci

j| > 0
(2.3)

s(S(d)) =

|S(d)|∑
i=1

(|Si| − 1) (2.4)

k(K(d)) =

K(d)|∑
i=1

(|Ki| − 1) (2.5)

where wc(Ci
j) represents the number of coreference links in the intersection set of key

clusters Ki and response clusters Sj . k(K(d)) and s(S(d)) are the number of links in the
gold and predicted coreference clusters, respectively.

Therefore, the precision and recall can be computed as:

Precision =
c(K(d), S(d))

s(S(d))
(2.6)

7Most notations used in this section are based on Stylianou and Vlahavas (2021).
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Recall =
c(K(d), S(d))

k(K(d))
(2.7)

It is evident that the MUC metric ignores clusters that only contain one mention, and it
can not be trusted on a dataset where singleton entities exist.

2.3.2 B-CUBED

B3 is a mention-based metric. The final precision/recall is calculated based on the pre-
cision/recall of individual mentions. For each mention m in the key coreference cluster,
B3 computes how many correct mentions are included in the mention clusters of response
cluster:

Precision(m) =
wc(C

i
j)

ws(Sj)
(2.8)

Recall(m) =
wc(C

i
j)

wk(Ki)
(2.9)

where wc(Ci
j) = |Ci

j|, wk(Ki) = |Ki| and ws(Sj) = |Sj|. The final precision/recall are the
weighted sum of all mentions’ individual precision/recall.

Since it is calculated based on mentions rather than coreference links, B3 has a signif-
icant flaw. That is, if a gold mention exists in the response cluster, it will be considered
correct no matter whether it is included in the correct coreference cluster of response clus-
ters.

2.3.3 CEAF

Constrained Entity Alignment F-measure (CEAF) (Luo, 2005) assumes that each key coref-
erence cluster should only refer to one response coreference cluster. It uses the Kuhn-
Munkres algorithm to find the best mapping from the key clusters to the response clusters
(g∗) based on their similarity score computed by a similarity function (Φ):

Φ(g) =
∑

Ki∈Kmin(D)

Φ(Ki, g(Ki)) (2.10)
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where g(Ki) = Sj represents the mapping from Ki to Sj . Φ is the measure implying the
similarity between coreference cluster Ki and Sj . For example, Φ(K,S) represents the
number of shared mentions between K and S and Φ(K,K) is the number of mentions in
coreference cluster K.

Then the precision/recall equations can be defined as:

Precision =
Φ(g∗)∑|S(d)|

j=1 Φ(Sj, Sj)
(2.11)

Recall =
Φ(g∗)∑|K(d)|

i=1 Φ(Ki, Ki)
(2.12)

where g∗ is the collection of key clusters in the optimal mapping.
There are many different similarity functions proposed by Luo (2005):

Φ1(K,S) =

{
1, K = S

0, otherwise
(2.13)

Φ2(K,S) =

{
1, K ∩ S 6= ∅
0, otherwise

(2.14)

Φ3(K,S) = |K ∩ S| (2.15)

Φ4(K,S) =
2|K ∩ S|
|K|+ |S|

(2.16)

Equation (2.13) considers that two coreference clusters are identical if all mentions are the
same, while (2.14) insists that two clusters are the same if their intersection is not null.
However, these two similarity measurements are not discriminative since they are not able
to measure how similar two coreference clusters are. In contrast, the last two equations
are clearer to measure the degree to which two coreference clusters are similar. (2.15)
considers the size of the intersection set of two coreference clusters, whereas (2.16) is the
mention F-measure between predicted and gold coreference clusters, which is used in the
implementation of the official evaluation scripts of the CoNLL-2012 shared task.

Considering the cons and pros of these three evaluation metrics, the best practice is to
use the average of their F1 scores as the final model performance. This practice also allows
fair comparison among different coreference resolution models on standard benchmark
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datasets. 8

2.4 Rule-based Coreference System

Like many methods in NLP literature, coreference systems of the early days heavily relied
on hand-crafted rules derived from heuristics or syntactic and semantic features extracted
from document texts. In this section, we specifically discuss several classic and important
rule-based models.

2.4.1 Hobb’s Algorithm

Hobb’s naive algorithm (Hobbs, 1978) can arguably be one of the first algorithms proposed
to deal with coreference resolution. It designed a bunch of complicated rules to traverse
the constituent parse tree of sentences to resolve the referent of a given mention span in a
left-to-right and breadth-first manner. Another heuristic is the use of selectional preference
to eliminate impossible candidates. The antecedent search space is pruned using the selec-
tional constraints, and the algorithm stops when the space converges to a single antecedent.
Unlike models proposed nowadays, which are automatically evaluated using large datasets
and well-designed evaluation metrics, it was manually evaluated on different datasets like
news and magazines.

2.4.2 Centering Theory

Unlike Hobb’s algorithm, which utilises syntactic features, centering theory (Grosz et al.,
1995) attempts to exploit the discourse properties of coreferences. The centering theory
defines the center as an entity that links several utterances or sentences. The forward-
looking center refers to a list of entities mentioned in a single utterance. In contrast, the
backward-looking center is defined as the intersection of forward-looking centering of the
current and preceding sentence, generally as the highest-ranking entity of the preceding
sentence realised in the current sentence.

8Please note that for the evaluation on datasets with singleton mentions annotated, B3 and CEAF can
handle singletons by simply treating singletons as coreference clusters containing only one mention.
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The algorithm first constructs all possible pairs of forward-looking and backward-
looking centers, which are denoted as anchors. Then it uses several defined rules to prune
impossible anchors. There are three main phases in center identification: center continua-
tion means that two neighbouring utterances share the same center; center retaining indi-
cates a possible shift between centers; center shifting implies the change from one center to
another center in the next utterance. Meanwhile, another two rules are also applied: Rule1
states that the center entity has the highest probability of being pronominalized, and Rule2
requires that center continuation is preferred than center retaining is preferred than center
shifting.

2.4.3 Multi-Pass Sieve System

Raghunathan et al. (2010) claims that a function that utilises a set of hand-engineered fea-
tures can lead to inferior performance, for the reason that high-precision features can be
overwhelmed by low-precision features. The multi-pass sieve model organises determin-
istic rules as a pyramid, where rules are first ordered descendingly by their corresponding
precision scores and then applied in that order. Each sieve’s input is the cluster output from
the preceding sieve. Important features are guaranteed to have higher priority. It comprises
two phases: the first phase is responsible for extracting, sorting and pruning mentions us-
ing myriad constraints based on parse structures, whereas the second phase is in charge of
filtering impossible candidates using multi passes such as head matching, string matching
and gender, animacy and number agreement.

2.4.4 Discussion

Coreference models in the early days explored this task broadly by exploiting many dif-
ferent kinds of features, including discourse structures and syntactic and semantic features,
providing numerous advice for the development of statistical and deep learning models.
However, these rule-based systems were typically evaluated on different datasets and eval-
uation metrics, making the comparison of their performance inconsistent. Moreover, the
reliance on hand-designed rules hinders their generalization ability, resulting in the phe-
nomenon that an algorithm performs well in one domain but fails in others.
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2.5 Statistical and Machine Learning Coreference System

With the availability of tagged coreference datasets, learning-based and statistical models
have become prevalent and they also outperformed their rule-based counterparts. Learning-
based models are normally categorised into three categories, namely mention-pair mod-
els, mention-ranking models and entity-mention models. We briefly discuss each of these
model types in this section.

2.5.1 Mention-Pair Model

Mention-pair models are binary classifiers determining whether a pair of mentions are
coreferent without depending on other pairs. The mention pair model consists of three
independent phases, and the improvement on one phase does not necessarily indicate the
improvement of the subsequent phase.

The first phase is to create training instances. One strategy is to create a positive in-
stance by taking a mention A1 and its nearest correct antecedent A2. In contrast, the nega-
tive instance is constructed by randomly choosing a mention A3 in the document contexts
between A1 and A2 (Soon et al., 2001). Another constraint (Ng and Cardie, 2002b) is that
if A1 is a pronoun, A2 cannot be chosen unless it is non-pronominal.9

The second phase is model training. Many popular learning algorithms such as decision
trees and random forests (Aone and William, 1995; McCarthy and Lehnert, 1995) were
widely used as a binary classifier.

The final phase is the generation of entity clusters. Many clustering methods have been
proposed such as best-first (Ng and Cardie, 2002b) and closest-first (Soon et al., 2001)
methods. The closest-first clustering considers that all previous mentions of each mention
are processed in a right-to-left manner. If a candidate is classified as true, it is regarded as
correct and others are discarded. In other words, it will choose the closest candidate that is
predicted as true. By contrast, the best-first method chooses the mention classified as true
but with the largest predicted score.

However, decision making is limited in two compared mentions and can fail when a
mention is ambiguous. For example, consider a document which contains three mentions:

9Deciding whether a pronoun is the antecedent of another pronoun can be comparatively harder since they
carry limited semantic information. Such examples sometimes can be even too difficult for humans.
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Obama, Mr. Obama and she. A mention-pair model may links Obama with Mr. Obama

due to string matching and determines that Obama is coreferent with she because of prox-
imity. Under this case, this model cannot cluster these three mentions for violating gender
agreement. But transitivity implies that Mr. Obama and she will end up being grouped into
the same cluster. This kind of error is mainly caused by the assumption that coreference
decisions are independent: earlier decisions about pairs of mentions cannot inform later
ones.

Another line of research in this stage focuses on whether determining anaphoricity ex-
plicitly is necessary (Ng and Cardie, 2002a). Anaphoricity determination is the task of
determining whether a given mention is anaphoric or not.10 The motivation behind this
idea is that compared to coreference resolution, which aims to find the correct antecedent
for a given mention, determining whether a mention is anaphoric or not is much easier.
Besides, anaphoricity determination can vastly simplify the coreference resolution task, as
only mentions that are predicted to be anaphoric should be resolved further. The common
practice is to independently train an anaphoricity prediction model and use it as a com-
ponent for the coreference model in a pipeline manner. Meanwhile, many studies also
confirm that syntax both in the form of dependency graph and constituent trees brings ben-
efits in determining anaphoricity (Kong et al., 2010; Kong and Zhou, 2011). The potential
risk of such a method is that inaccurate anaphoricity determination can hurt coreference
resolution performance because of the cascaded errors from the anaphoricity component
to the coreference component. Therefore, although anaphoricity determination could sim-
plify coreference resolution, early approaches do not explicitly model anaphoricity. They
instead consider a mention as non-anaphoric if no antecedent mentions are selected for it
when building coreference chains, which is also widely used by neural models nowadays.

2.5.2 Mention-Ranking Model

The Mention-ranking model explicitly ranks all antecedents of a mention and chooses the
one with the highest score as reference. This kind of model is first proposed by Yang
et al. (2003) and Iida et al. (2003) to do pairwise ranking. This method was later improved

10Anaphoric means a mention is coreferent with a preceding mention (preceding mentions means mentions
that appear in preceding contexts of a given mention), while non-anaphoric means a mention is not coreferent
with any preceding mentions and starts an entirely new coreference cluster.
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by Denis and Baldridge (2008) to use the softmax function to rank all previous mention
candidates, which almost every modern neural mention-ranking model adopts. Ng (2005)
proposed to do mention detection and antecedent linking jointly in an end-to-end manner.
A dummy token is used to represent antecedents for non-anaphoric mention spans. That is,
for a given mention i, a list of associated random variables Yi = {ε, 1, . . . , c − 1} is used
to represent all its possible antecedents, and the final decision is based on the ranking over
all variables by choosing the one with the highest score.

2.5.3 Entity-Based Model

The motivation of the entity-mention model is the incapability of the mention-pair model
in modelling global features (only local features derived from two compared mentions are
employed). Sometimes the limited information extracted from two mentions can not pro-
vide sufficient signals for coreference reasoning, especially when the compared candidate
antecedent is a pronoun or lack of discriminative information such as gender. Therefore,
various machine learning entity-based models have been proposed over the past decades.

The entity-mention model is the entity-based version of the mention-pair model, which
generally focuses on determining whether a mention is coreferent with previously-formed
mention clusters (Rahman and Ng, 2009). It improves over mention-pair models by utilis-
ing past coreference decisions to inform future ones. It focuses on whether it should assign
a mention span to a previously-formed entity cluster or create a new entity cluster. Tradi-
tional feature-based entity models normally extracted features over clusters. Features such
as cluster size and shapes, which are the types of mentions within the cluster (Björkelund
and Kuhn, 2014) were used. Entity-mention model can also build upon mention-pair mod-
els by aggregating the mention-pair probabilities over all mention-pairs in two clusters
(Clark and Manning, 2015).

The cluster-ranking model (Rahman and Ng, 2009) extends the mention-ranking model
by ranking existing clusters instead of candidate mentions, and they have been confirmed to
outperforms their entity-mention counterparts. Agglomerative clustering method (Culotta
et al., 2007; Stoyanov and Eisner, 2012) is another line of research for entity-based models.
In this framework, each mention is initialized as a single cluster, and the learned model
chooses to merge two best clusters in each iteration by exploiting cluster-level features.

However, although entity-based models enable us to utilise information on cluster level,
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Figure 2.2: The first stage of the end-to-end coreference model generates mention span
representations and computes scores for each mention (Figure from Lee et al. (2017)).

it does not lead to significant performance gains than mention-ranking models. The incre-
mental processing way is also less efficient than mention-ranking models and cannot be
easily parallelized.

2.6 Neural Coreference System

The classification of neural coreference models is almost the same as traditional learning-
based models. But the dependence on hand-designed features has been significantly re-
duced. In this section, we discuss some recently proposed neural mention-ranking models.

2.6.1 End-to-End Neural Coreference Resolution

In this section, we describe the neural mention-ranking model proposed by Lee et al.
(2017). It is the first end-to-end neural mention ranking model without a separate men-
tion detection component. Instead, it enumerates all possible text spans up to a certain
length limit as candidate mentions. Moreover, its dependence on hand-engineered features
has been significantly reduced and only a few hand-crafted features such as span width are
included, which can be easily obtained. We refer to this as E2E-COREF in this thesis, and
it also forms the basis of our proposed methods and is a key baseline in evaluation.
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Task Formulation The task aims to assign an antecedent yi to each span i, choosing
from a sequence of candidate variables Yi = {ε, 1, . . . , c− 1}, where ε is a dummy symbol
indicating that mention i is non-anaphoric or it is the first appearance of an entity.

For each pair of span i and j, the model assigns a score sc(i, j) to measure the likelihood
of mention j being the antecedent of mention i. Therefore, for each mention i, the system
selects the mention j with the highest score from Yi.

Model Architecture As shown in Figure 2.2, the input text is first transformed into a
sequence of continuous vectors {w1,w2, . . . ,wt} by combining pretrained word embed-
dings (Mikolov et al., 2013; Pennington et al., 2014) and CNN-based or BiLSTM-based
character embeddings (Turian et al., 2010). Next it is processed by a one-layer BiLSTM
(Hochreiter and Schmidhuber, 1997) to form contextualized features:

←−
h t = LSTMforward(

←−
h t−1,wt) (2.17)

−→
h t = LSTMbackward(

−→
h t+1,wt) (2.18)

ht = [
←−
h t;
−→
h t] (2.19)

Then, each span’s representation is a concatenation of start and end tokens of the span,
the head words obtained by using attention mechanism among all words within the span:

αt = FFNN(ht) (2.20)

βi,t =
exp(αt)∑End(i)

k=Start(i) exp(αk)
(2.21)

hHead(i) =

End(i)∑
t=Start(i)

βi,t · ht (2.22)

where FFNN represents a two-layer feedforward neural network with the ReLU activation
function inside.

Therefore, each span i is represented as a vector gi defined as:

gi = [hStart(i),hEnd(i),hHead(i), φ(i)] (2.23)

where φ(i) is the embedded span width.
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Figure 2.3: In the second stage, mention score is used for pruning unlikely candidate men-
tions and antecedent score is computed for each pair of mentions. Final coreference scores
are obtained by summing the mention and antecedent scores of each mention pair (Figure
from Lee et al. (2017)).

By comparing each span with other possible antecedents, the model chooses the one
with the highest score. As shown in Figure 2.3, the final score is factored into two parts:
mention score sm(i) and coreference score sc(i, j), which measure how likely span i and j
comprise valid mentions and corefer to one another, respectively:

sm(i) = FFNNm(gi) (2.24)

sc(i, j) = FFNNc([gi,gj,gi � gj, φ(i, j)] (2.25)

s(i, j) = sm(i) + sm(j) + sc(i, j) (2.26)

where � is element-wise multiplication, whereas, φ(i, j) is a feature vector that encodes
useful features such as document genre, speaker identities and span distances. Both FFNNm

and FFNNs are two-layer feedforward networks with ReLU function.
To reduce memory consumption and sidestep quardic complexity, the model only keeps

a few best antecedent candidates as a function of 0.4T (T is the document length) according
to their mention scores. Moreover, each mention’s maximum number of antecedents is set
to 250 to reduce inference time further. Finally, the model can create final clusters for
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each entity by choosing the antecedent with the highest score for each mention i and doing
transitive closure on the antecedents. Despite the aggressive pruning strategy, it achieved
new state-of-the-art performance on the CoNLL-2012 English shared task at that time.

Discussion As the first end-to-end neural coreference resolution model, E2E-COREF re-
duces the need for a separate mention detection component. Thus, mention detection and
coreference resolution are jointly trained in a fully end-to-end manner to reduce cascading
errors. Besides, it uses an attention mechanism rather than a syntax parser to find head
words. Experimental analysis shows that this method can find head words more accurately
than traditional ones, showing its contribution to a better final performance.

However, E2E-COREF has several limitations. Firstly, considering inference efficiency,
it aggressively uses distance pruning strategy to limit potential antecedents to the nearest
250 ones, while for some documents, especially in biomedical areas, the distance between
two coreferent mentions can be much further. Secondly, due to long documents in the
dataset, the model uses independent LSTMs for each sentence. Although it avoids RNN’s
locality biasing problem, it ignores relations between neighbouring sentences, thereby los-
ing inter-sentence information (Luo and Glass, 2018). Thirdly, at the beginning stage of
training, mention pruning is completely random since no mention-detection supervision
is provided, resulting in longer training time (Zhang et al., 2018). Lastly, as a mention-
ranking model, it does not build global entity-level mention representation, which treats
each mention independently and limits the information it can use when resolving corefer-
ence.

In this thesis, we propose two novel methods based on the E2E-COREF model. They
effectively incorporate dependency and constituent syntax to capture long-range depen-
dencies between words and semantic role labels to have a deep understanding of semantics
encoded in document texts (Chapter 3 and 4). Furthermore, we also utilise large pretrained
language models (Joshi et al., 2020) to encode documents to obtain contextualized repre-
sentations and inter-sentence information.

2.6.2 Higher-Order Span Refinement with Coarse-to-Fine Pruning

Lee et al. (2018) improved the E2E-COREF model by building approximated entity-level
representation conditioning on higher-order structures and coarse-to-fine pruning strategy.
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This model is denoted as C2F-COREF in this thesis.
C2F-COREF is improved by including inference with N iterations of refining span rep-

resentations, denoted as gni for the representation of span i at iteration n. At each iteration
n, the refined span representation is the combination of previous representation gn−1i and
the corresponding expected antecedent vector by using a gating mechanism, while the ex-
pected antecedent vector is defined as the weighted sum among all possible antecedents
using the antecedent distribution:

Pn(yi) =
exp(gni ,g

n
yi

)∑
yi∈Yi exp(gni ,g

n
y )

(2.27)

where Pn(yi) is the likelihood of mention yi being the correct antecedent of mention i

at iteration n. Then we can use this antecedent distribution Pn to compute the expected
antecedent vector ani for each mention:

ani =
∑
yi∈Yi

Pn(yi) · gnyi (2.28)

Then the span representation gni is obtained as the interpolation between ani and gn−1i :

fni = σ(Wf [g
n−1
i ; ani )] (2.29)

gni = fni � gn−1i + (1− fni )� ani (2.30)

Where σ is the logistic sigmoid function and fni represents a vector whose value is in [0, 1],
controlling to which extent the new information from its attended antecedent should be
integrated. The above procedure can be repeated for several times to gradually obtain
refined span representation for each mention.

Another improvement is the coarse-to-fine inference which uses a bilinear score func-
tion to prune impossible antecedents:

c(i, j) = gTi Wcgj (2.31)

where Wc is a trainable weight matrix and c(i, j) is the roughly approximated antecedent
score measuring the probability of mention i and j being coreferent. Thus, the overall
score function is now factored into three parts: mention score, coarse-to-fine score and
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coreference score:
s(i, j) = sm(i) + sm(j) + c(i, j) + sc(i, j) (2.32)

In summary, the procedure of C2F-COREF consists of three stages:

1. Keep the best M mentions based on mention score sm(i) of each mention span i.

2. Keep the best K antecedent of remaining spans based on sm(i) + sm(j) + c(i, j)

3. Use above described overall score s(i, j) to obtain the best likely antecedent for each
mention i.

By using this strategy, C2F-COREF can prune impossible candidates more progressively
(decrease from 250 to 50) while improving performance. Apart from these two improve-
ments, it alternatively uses deep contextualized word embeddings (Peters et al., 2018) as
input to achieve further improvements. This also implies that information from other sen-
tences and longer-range contexts are important in resolving coreference. Furthermore, the
C2F-COREF model has been extended to integrate more powerful pretrained models includ-
ing BERT (Devlin et al., 2019) and SpanBERT (Joshi et al., 2020) to achieve state-of-art
performance (Jiang and Cohn, 2021).

2.6.3 Knowledge Enhanced Variants

Some coreference resolution tasks may require external knowledge. Linguistic features
and heuristics can help models utilise some patterns to make decisions easier, while ex-
ternal knowledge enables the model to achieve better performance in interpreting texts of
professional areas.

Zhang et al. (2019a) proposed a novel neural model incorporating external linguistic
features and knowledge derived from heuristics based on the framework of E2E-COREF. It
processes the input document in the same way as C2F-COREF to obtain span representa-
tion and calculate the coreference score for each mention pair. Then based on the current
mention pair’s context information, it selectively extracts relevant information by using a
knowledge attention layer to get knowledge scores. Due to a large number of antecedent
candidates, the model uses the softmax pruning strategy to eliminate candidates with lower
coreference scores, and the final score is factored into the combination of knowledge and
coreference scores.
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Based on Zhang et al. (2019a), Zhang et al. (2019b) represents external knowledge as
knowledge graphs to extract the most relevant knowledge for each mention based on its
contexts and knowledge embeddings using an attention mechanism. Apart from linguistic
and heuristic features, knowledge bases including commonsense and medical knowledge
are used to enable the model to depend on complex knowledge when interpreting texts in
professional areas.

Both papers show that external knowledge helps to make some difficult coreference
decisions. However, good features always require careful design by experts, and how to
properly integrate these features should be well considered. Moreover, they only validated
the effectiveness of external knowledge on pronoun resolution. Whether such external
knowledge is still helpful for resolving common coreference resolution including proper
names has not been explored yet.

2.6.4 Coreference Resolution as Machine Reading Comprehension

Very recently, Wu et al. (2020) proposes to deal with coreference resolution by using ma-
chine reading comprehension (MRC) framework (CorefQA): For each mention span, a
query is generated by using the sentence it resides in, and the corresponding antecedent
mention is obtained using the generated query through a span-prediction module.

More specifically, it uses SpanBERT (Joshi et al., 2020) as the backbone to obtain input
representations, and the process of long documents are dealt with sliding window. For
mention proposal, it uses a feedforward network to compute the likelihood of each text
span being mentions and prune those unlikely spans. Then, for each proposed mention
candidate, it uses the MRC mechanism to extract relevant antecedents by injecting the
generated query and documents into SpanBERT, and the predicted answer is the most likely
antecedent.

CorefQA achieves new state-of-the-art performance on the GAP and CoNLL-2012 En-
glish datasets, demonstrating the effectiveness of MRC mechanism in coreference resolu-
tion. By using this framework, the query for each mention can depend on longer contexts,
while on previous models, contexts are limited in two compared mentions. Moreover, the
use of MRC enables the model to use transfer learning techniques to pretrain on many
other large-sized question answering datasets, which can further improve its generalization
ability.
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However, this model is limited in some aspects. For each document, the number of de-
tected mentions is still significant after being pruned, and many queries will be generated.
Therefore, for each generated query, the whole document context will be fed into the doc-
ument encoder independently to find their corresponding antecedents. The consequence
is that it is memory-intensive and inefficient during both training and inference time since
the above procedure should be repeated many times. Moreover, the slow inference speed
hinders its utility in real-world settings and real-time scenarios. Besides, the generation of
queries should be well designed (e.g., how to generate informative questions), and how to
provide useful texts rather than the whole documents should be well evaluated.

2.7 Sequential Neural Coreference Resolution Model

One drawback of the mention ranking models described in the previous section is that they
usually require a large amount of memory at both the training and inference stage, hindering
their utility in real-world settings. This phenomenon has become even more severe when
utilising pretrained language models as document encoders. Recently, there are a variety
of models which imitate the reading behaviour of human beings, processing documents
linearly and incrementally resolving coreferences using constant memory.

2.7.1 Recurrent Entity Network for Pronoun Resolution

Recently, Liu et al. (2019) proposes a novel architecture based on recurrent entity network
(RefReader). Unlike mention-ranking models, it processes text incrementally and resolves
pronouns on the fly. It uses a fixed-length memory cell to represent each entity. Each
cell is a triplet of key, value and salience. It consists of two components: a memory unit
responsible for storing and tracking entity states and a recurrent unit controlling memory
updates via a set of gates.

Specifically, the recurrent unit controls the update of the current hidden state by com-
bining the previous hidden state and current input via a gating mechanism. The memory
unit uses overwrite, update and replicate gates to control memory updates. Overwrite
represents the probability of writing new entities and removing old entities, update con-
trols information updates on stored entities and replicate deprecates the salience of old
entities when no mention appears. Gate copies at each time step are maintained to build
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coreference links for the final decision. Furthermore, the author uses language modelling
objective to pretrain the model, and experimental results show that even without explicit
golden coreference labels, it implicitly learns latent coreference structures to some extent,
which is also found in the analysis of learned attentions of large pretrained language models
(Clark et al., 2019).

RefReader sets new state-of-the-art performance on the GAP dataset, and it is the first
neural model which resolves pronouns incrementally. However, it does not examine its
feasibility in the CoNLL-2012 shared task, where texts are full documents and much more
entities should be resolved. Its experimental analysis also shows model performance de-
grades, and extra memory cells are required to maintain comparable performance when
text length increases.

Further attempts have been made to improve the RefReader model. Toshniwal et al.
(2020) proposed a similar model PeTra based on the RefReader with simplified memory
modules. Similarly, it contains overwrite and coref gates to track entities stored in memory
cells, with much-simplified memory contents. The key-value vectors have been replaced
with a simple content vector to represent a memory cell. Furthermore, some restrictions
have been applied to improve the RefReader model, such as coref gates should not open for
a memory cell unless it has been updated before. The improvements that PeTra achieved
against the RefReader model verify its effectiveness with much simpler architecture. How-
ever, the deficiency of processing long documents still remains a difficult problem for such
sequential models.

2.7.2 Coreference Resolution with Constant Memory

Following similar ideas to resolve coreference incrementally, Xia et al. (2020) has success-
fully recast a memory-intensive mention ranking model (Joshi et al., 2019) into a sequential
model, consuming constant memory with respect to document length. Similar to the C2F-
COREF model, it first proposes a set of candidate mention spans. Then for each mention,
it will compute the similarity scores against the embeddings of existing clusters. These
spans are then used to either update the cluster embeddings (if refer to one of the existing
entity clusters) or create a new entity cluster. Furthermore, only a set of salient entities are
maintained in the memory, and expired entities are removed from memory and will never
be revisited. The salience of entities is mainly decided by the cluster size and the distance
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between the current context and the last appearance of spans in each cluster. Their model
has been successfully converted from a fully-trained high-performing model with a slight
performance drop, reducing memory usage with constant space complexity in regards to
document length. However, such sequential models still rely on mention-ranking models
that have been fully trained. Our experiments also show that training such sequential mod-
els from scratch on the same dataset could lead to significant performance degradation.
Nevertheless, the success of converting a memory-intensive mention-ranking model to a
sequential model with constant memory may give us new research directions: trying to im-
prove mention-ranking models as much as possible and reducing it to a sequential model
using similar ways to increase its utility in real-world settings and real-time scenarios.



Chapter 3

Incorporating Syntax and Semantic
Roles

3.1 Introduction

In recent years, impressive progress has been made since the introduction of the first end-
to-end neural coreference resolution model (Lee et al., 2017) by utilising contextualized
embeddings from large pretrained language models such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019), with an improvement of 15.9% over recent three years (Joshi
et al., 2019, 2020; Kantor and Globerson, 2019; Xu and Choi, 2020; Wu et al., 2020). Rich
language knowledge encoded in these pretrained models has largely alleviated the need for
syntactic and semantic features. However, such information has been shown to benefit a
series of BERT-based models on other tasks (Nie et al., 2020a; Wang et al., 2020; Pouran
Ben Veyseh et al., 2020). Therefore, we believe such information could also benefit the
coreference resolution task.

In this chapter, we propose a neural coreference resolution model based on Joshi et al.
(2019) (§2.6.1 and §2.6.2), which we extend by incorporating external syntactic and se-
mantic information. For syntactic information, we use dependency trees to capture the
long-term dependency that exists among mentions. Kong and Jian (2019) has successfully
incorporated structural information into neural models, but their model still requires the
design of complex hand-engineered features. In contrast, our model is more flexible, using

31
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a graph neural network to encode syntax in the form of dependency trees. For semantic in-
formation, we adopt semantic role labelling (SRL) structures. SRL labels capture who did

what to whom, and it effectively provides document-level event description information,
which allows us to identify the relationship between mentions better. Previous statistical
coreference systems have successfully integrated such information (Ponzetto and Strube,
2006a; Kong et al., 2009), but their effectiveness has not been examined in neural models.

Moreover, by drawing inspiration from recent progress made in document-level rela-
tion extraction task (Christopoulou et al., 2019), we encode both syntactic and semantic
information in a heterogeneous graph. Nodes of different granularity are connected based
on the feature structures. Node representations are updated iteratively through our defined
information propagation mechanism and incorporated into contextualized embeddings us-
ing an attentive integration module and gating mechanism. We conduct experiments on the
OntoNotes 5.0 (Pradhan et al., 2012) benchmark and ACE 2005 dataset (Walker and Con-
sortium, 2005), where the results show that our proposed model significantly outperforms
a strong baseline.1

This chapter is organized as follows. We first discuss related work in Section 3.2, and
then we briefly review the baseline model where our proposed model was based (§3.3).
Next, we introduce our proposed model in Section 3.4, including the construction of syn-
tactic and semantic graph and the design of the information propagation mechanism. We
then describe the learning objective of our model in Section 3.5. Experiments and re-
sults are presented in Section 3.6. Besides, we also analyse the behaviour of our proposed
model in detail in Section 3.7 and 3.8. Finally, we conclude and discuss future work in
Section 3.9.

3.2 Related Work

Coreference Resolution Coreference resolution is a core task in NLP, which aims to
identify all mentions that refer to the same entity. With the introduction of the first end-
to-end coreference resolution model (Lee et al., 2017), the coreference resolution task has
been dominated by neural end-to-end based models. Moreover, with the help of large pre-
trained language models, neural coreference resolution models have achieved impressive

1Code is available at: https://github.com/Fantabulous-J/coref-HGAT

https://github.com/Fantabulous-J/coref-HGAT
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improvements on the standard evaluation benchmark dataset (Pradhan et al., 2012). Re-
cently, Wu et al. (2020) (CorefQA) chose to formulate the coreference resolution task as
a span-prediction problem by utilising machine reading comprehension framework. With
the help of transfer learning, they successfully pretrain their model on large QA datasets
such as SQuAD (Rajpurkar et al., 2016), achieving current state-of-the-art performance.
However, training the CorefQA model requires intensive GPU memory and the inference
speed is not ideal because of the repeated QA procedure to find correct antecedents for
each proposed mention candidate. In this chapter, we do not adopt the CorefQA as a start
baseline for hardware concerns but choose another lightweight baseline (Joshi et al., 2019)
to evaluate the utility of external syntax and semantics for the coreference resolution task.

Incorporating External Features using Graph Neural Network Graph Neural Net-
works (GNN) have long been used for integrating external features of graph structures into
a range of Natural Language Understanding and Generation tasks, including semantic role
labelling (Marcheggiani and Titov, 2017) and machine translation (Bastings et al., 2017).
However, the utilisation of GNN on coreference resolution task is less explored. Xu and
Yang (2019) adopted dependency syntax to improve gendered pronoun resolution. How-
ever, they did not evaluate their model on larger datasets such as OntoNotes and identify
whether syntax features are still helpful for common coreference resolution such as noun
phrases. In this chapter, we utilise not only syntax features but also semantic features. We
show that both of them contribute to significant improvement over a strong baseline on a
large standard dataset and a dataset of smaller size.

There are a variety of GNN variants. Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) is the most widely-used one and has been shown to benefit a number of
NLP tasks in integrating external features. However, it lacks the ability to model different
edge labels, including directions and edge types. Although Relational Graph Convolutional
Network (RGCN) (Schlichtkrull et al., 2017) was proposed to tackle this problem, the way
of representing edge information as label-wise parameters makes it suffer from the over-
parameterisation problem even for small-sized label vocabularies. In this work, we use
a graph encoder improved based on Graph Attention Network (GAT) (Veličković et al.,
2018) to capture structural syntax and semantics better, as GAT performs better in handling
sparse graphs and can model different types of edges with few parameters.
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BERT for Coreference Resolution Large pretrained language models (Peters et al.,
2018; Devlin et al., 2019; Joshi et al., 2020) have largely driven the advances in coref-
erence resolution and other NLP tasks in recent two years. Joshi et al. (2019) improves
the C2F-COREF model by replacing the BiLSTM-based contextualized document encoder
with BERT to effectively model long-range dependencies. The performance on OntoNotes
has been further improved by utilising SpanBERT (Joshi et al., 2020), which introduces the
random span masking and span boundary detection pretraining tasks to obtain better span
representations. In this chapter, we use SpanBERT as the document encoder since it has
demonstrated its superior effectiveness on span-based tasks.

3.3 Brief Overview of Baseline Model

Our model is based on the C2F-COREF model (Lee et al., 2018) , which is described in
detail in §2.6.2. Here we have a quick recap of its component. It enumerates all text
spans as potential mentions and prunes unlikely spans aggressively. For each mention i,
the model will learn a distribution over its possible antecedents Y(i):

P (y) =
es(i,y)∑

y′∈Y(i) e
s(i,y′)

(3.1)

where the scoring function s(i, j) measures how likely span i and j comprise valid mentions
and corefer to one another:

s(i, j) = sm(i) + sm(j) + sc(i, j) (3.2)

sm(i) = FFNNm(gi) (3.3)

sc(i, j) = FFNNc(gi,gj, φ(i, j)) (3.4)

where gi and gj are span representations formed by the concatenation of contextualized
embeddings of span endpoints and head vector using attention mechanism. FFNN repre-
sents the feedforward layer, φ(i, j) are meta features including span distance and speaker
identities, and sm and sc are the mention score and pairwise coreference score. We do
not use the higher-order inference module to get the refined span representation using an-
tecedent distribution as an attention mechanism since a recent study (Xu and Choi, 2020)
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shows that it fails to boost performance.

3.4 Proposed Model
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Figure 3.1: The overall architecture of our proposed model. Firstly, a document is encoded
by SpanBERT to get initial token representations, which are then enhanced by the syn-
tactic and semantic graph to learn rich global information, respectively. Next, an attentive
integration layer is employed to infuse enhanced token representation dynamically. Finally,
enhanced token representations are utilised to form span embeddings and compute pairwise
coreference scores.

Figure 3.1 shows the architecture of our proposed model, where the key components
are presented in blue and orange backgrounds. Other parts follow Lee et al. (2018) (see
§3.3) except that we use SpanBERT (Joshi et al., 2020) as the document encoder.
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Figure 3.2: An example of our proposed Syntax and Semantics-based Heterogeneous
Graph.

3.4.1 Node Construction

There are three types of nodes in our heterogeneous graph: token nodes (T), argument
nodes (A) and predicate nodes (P). The representation of token nodes and predicate nodes
is the contextualized embeddings from the SpanBERT encoder, denoted as hw and hp re-
spectively. The representation of an argument node is formed by averaging the embeddings
of tokens it contains, denoted as ha.

3.4.2 Edge Construction

Graph edges are constructed based on feature structures. An example is shown in Figure 3.2
to illustrate the structure of our heterogeneous graph.

Token-Token (TT) Edges are constructed according to dependency tree structures. Specif-
ically, there will be a directed edge between two token nodes starting from head to depen-
dent if connected, with edges being the corresponding dependency labels. A self-loop edge
with cyclic label is also added to each node in the graph. Besides, we also link the root
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nodes of two adjacent sentences to allow cross-sentence interaction.
However, having SpanBERT work with word-level dependency syntax is one challenge

because it tokenizes documents into wordpiece units. To resolve this inconsistent issue,
we use a simple alignment procedure to map word-level syntax sequence into wordpiece
sequence in SpanBERT: if there is an edge between word i and j, then we assign the same
edge between any subtoken in word i and any subtoken in word j.

Token-Argument (TA) Argument nodes are linked to token nodes they contain. The
edge is unlabelled but bidirectional to allow token-level information to augment the aver-
aged representation of arguments and propagate semantic information back to tokens.

Predicate-Argument (PA) Argument nodes are connected to predicate nodes they be-
long to with edges being the corresponding SRL labels. The edge is made bidirectional to
allow mutual information propagation. Predicates can be regarded as intermediate nodes to
allow each argument to aggregate information from other arguments with the same predi-
cate.

3.4.3 Graph Attention Layer

We use a Graph Attention Network (Veličković et al., 2018) to propagate syntactic and
semantic information to basic token nodes. For a node i, the attention mechanism allows it
to selectively incorporate information from its neighbour nodes Ni:

αij = softmax(σ(aT [Whi;Whj; eij])) (3.5)

h′i = ‖Kk=1ReLU(
∑
j∈Ni

αkijW
khj) (3.6)

where hi and hj are embeddings of node i and j, aT , W and Wk are trainable parameters.
eij is edge label embedding between node i and j, σ is the LeakyReLU activation function.
‖ and [; ] represent the concatenation operation. Eqs. 3.5 and 3.6 are designated as an
operation, which will be used in next section for simplicity:

h′i = GAT(hi,hj) (3.7)
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where hi and hj are the embeddings of target and neighbour node and h′i is the updated
embedding of target node.

3.4.4 Information Propagation

To make each node embedding more informative, we update all nodes in the graph multiple
times through our designed information propagation path. First, we update token nodes
using its neighbour token nodes connected through dependency syntactic edges:

hlw = GAT(hl−1w ,hl−1w ) (3.8)

where hl−1w is the token representation in previous layer l − 1, hlw is the updated represen-
tation in current layer l and h0

w is the SpanBERT encoding.
In parallel, we update the argument using the token representation; then the updated

argument is used to update the predicate features; after that, the updated predicate nodes
propagate information back to their connected argument nodes; finally, the updated argu-
ment nodes distribute the representation to all connected basic token nodes:

hla = GAT(hl−1a ,hl−1w ) (3.9)

hlp = GAT(hl−1p ,hla) (3.10)

hla = GAT(hla,h
l
p) (3.11)

hlw = GAT(hl−1w ,hla) (3.12)

After L iterations, we can get the final syntax and semantic-enhanced token represen-
tation, which can be denoted as hdw and hsw, respectively.

3.4.5 Attentive Integration Layer

Since attention mechanisms are effective in choosing the most relevant information (Nie
et al., 2020a,b), we use an attentive integration layer to incorporate the syntactic and seman-
tic information selectively. For each type of information hcw ∈ {hdw,hsw}, we concatenate it
with initial token representation h0

w and use the concatenation to compute the importance
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score of hcw to h0
w:

αc = softmax(FFNNc([h
0
w;hcw])) (3.13)

where FFNNc is a one-layer feedforward network with sigmoid activation function for
information type c (either Dep or SRL). After obtaining the valid attention weights using
the softmax function, we could compute the weighted average sum of both syntactic and
semantic information:

o =
∑

c∈{d,s}

αch
c
w (3.14)

Since the extra syntactic and semantic information is not always useful, we use a gate
to leverage such information dynamically2:

f = σ(Wg · [h0
w;o] + bg) (3.15)

h′w = f � h0
w + (1− f)� o (3.16)

where Wg and bg are trainable parameters, � means element-wise multiplication and σ is
the logistic sigmoid function.

Finally, the augmented token representation h′w can be used to form span representation
and compute pairwise coreference score as in §3.3.

3.5 Model Learning

The objective function of our model consists of two parts: the cluster loss, Lcluster, and the
mention detection loss, Lmention:

L = Lcluster + λLmention (3.17)

where λ is the weight of mention detection loss.

2We also tried directly using the augmented information encoded by the graph attention network, but the
result is even worse than the baseline model. We believe some critical information such as position embed-
dings may be lost after graph layers. Another explanation is that the gate mechanism helps preserve gradients
from the document encoder after stacks of graph layers, playing a role similar to Highway Networks (Srivas-
tava et al., 2015).
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OntoNotes 5.0 ACE 2005
Train Dev Test Train Dev Test

#docs 2802 343 348 365 117 117
#mentions 155558 19155 19764 34340 11074 9167
#clusters 35142 4545 4532 11846 3760 3013

Table 3.1: The statistics of OntoNotes 5.0 and ACE 2005 datasets, including the number of
documents, mentions and entity clusters.

Mention Detection Loss For mention detection loss, we use binary cross-entropy to op-
timize this objective:

Lmention =
n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (3.18)

where ŷi = sigmoid(sm(i)), yi = 1 if span i is a gold mention, otherwise yi = 0.

Cluster Loss Follow Lee et al. (2017), we optimize the marginal log-likelihood of the
intersection of candidate antecedent sets and gold coreference clusters:

log
N∏
i=1

∑
ŷ∈Y(i)∩GOLD(i)

P (ŷ) (3.19)

where GOLD(i) is the set of correct antecedent spans in the gold cluster containing span i
and Y(i) is the set of candidate antecedent spans of span i. P (ŷ) is the predicted antecedent
distribution described in §3.3. For example, for a given mentionC, we assume its candidate
antecedent set is {A,B,D} and its gold cluster is {A,B,C}. Then the intersection of
candidate antecedent set and gold cluster is {A,B}, which means both A and B are correct
antecedents of C. The cluster loss objective will thus maximize the coreference scores of
A− C and B − C.
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3.6 Experiments

3.6.1 Experiment Setup

Dataset: To verify the effectiveness of our model, we conduct experiments on two bench-
mark datasets. The ACE 2005 dataset (Walker and Consortium, 2005) is the last version of
the ACE dataset series, which contains annotations for Name Entity Recognition (NER),
Relation Extraction(RE) and both Entity and Event Coreference Resolution. It has been
extensively evaluated by various neural NER and RE models but forgotten by many mod-
ern neural coreference resolution models after the release of the OntoNotes 5.0 benchmark.
Here we only evaluate our model on entity coreference resolution task. The ACE 2005
organizer has not officially released the test set (only the training set is available). Previ-
ous work used different train/dev/test splits over the training set, making the comparison
among different systems inconsistent. We follow the same train/dev/test split after Lu and
Ng (2020), resulting in 365, 117 and 117 documents in the training, development and test
datasets, respectively.

The English OnotoNotes 5.0 benchmark (Pradhan et al., 2012) has a standard split,
which consists of 2802, 343 and 348 documents in the training, development and test data
sets, and it is also the most widely-used dataset for entity coreference resolution task.

Unlike the ACE 2005 dataset, singleton mentions are not annotated in OnoteNotes 5.0.
Another key difference is that coreference links are only annotated between mentions that
belong to the same entity type in ACE, while OntoNotes does not have such restrictions,
allowing a mention to refer to other mentions that do not share the same entity type. The
statistics of these two datasets are shown in Table 3.1.3

Implementation Details: We reimplement the C2F-COREF+SpanBERT4 baseline using
PyTorch and use the Independent setup for long documents. As discussed in §3.3, we

3The statistics in terms of the number of mentions and clusters in the ACE dataset is slightly inconsistent
with what has been reported in Lu and Ng (2020). The reason is that after preprocessing the ACE dataset, we
could get repeated mentions and coreference clusters that share the same mention. Such repeated mentions
are removed and clusters with the same mention are merged in our experiment. We confirmed with the author
of Lu and Ng (2020) that they have not done so.

4https://github.com/mandarjoshi90/coref

https://github.com/mandarjoshi90/coref
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OntoNotes 5.0 ACE 2005
Hyparameters SpanBert-B SpanBert-L SpanBert-B SpanBert-L

Max span width 30 30 30 30
Max top antecedents 50 50 50 50
Max training segments 3 3 3 3
Top span ratio 0.4 0.4 0.35 0.4
Max segment length 384 512 384 512
SpanBERT learning rate 2× 10−5 1× 10−5 2× 10−5 1× 10−5

Task learning rate 3× 10−4 5× 10−4 3× 10−4 3× 10−4

Epochs 40 40 60 60
#GAT layers 2 2 2 2
#GAT heads 4 8 4 4
Edge label embedding size 300 300 300 300
Mention loss weight 0.5 0.5 100 100

Table 3.2: The best hyperparamters used in this experiment.

removed the high-order span representation refinement mechanism. The GAT implemen-
tation is based on Deep Graph Library (Wang et al., 2019a). Besides, since singleton men-
tions are annotated in ACE, we keep those mentions predicted to have no antecedents but
have positive mention scores and construct singleton clusters for them during the postpro-
cessing phase.

Training Details and Hyperparameter Setting: Most hyperparameters are adopted from
previous work (Joshi et al., 2019; Lu and Ng, 2020) and newly introduced hyperparame-
ters are determined through grid search. The ratio of proposing top mentions with high
recall is set to 0.4 and 0.35 for OntoNotes and ACE datasets, respectively. We enumerate
spans with a maximum length of up to 30 tokens. Documents are split into independent
segments with a length of at most 384 for SpanBERT-Base and 512 for SpanBERT-Large.
The maximum number of segments is set to 3 for both SpanBERT-Base and SpanBERT-
Large models during training. The model is finetuned for 40 epochs on OntoNotes and
60 epochs on ACE datasets with a batch size of 1 (single document). The learning rates
of finetuning SpanBERT-base and large model are 2 × 10−5 and 1 × 10−5. The learning
rates of task-specific parameters are 3 × 10−4 and 5 × 10−4 for OntoNotes, and 3 × 10−4

for ACE when using Base and Large model, respectively. The weight of mention loss λ is
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empirically set to 0.5 and 100 for the OntoNotes and ACE05 dataset, respectively.5 Both
SpanBERT parameters and task parameters are trained using Adam optimizer (Kingma and
Ba, 2015), with a warmup learning scheduler for the first 10% of training steps and linear
decay scheduler decreasing to 0, respectively. The number of heads for syntactic and se-
mantic sub-graphs is set to 4 for the ACE dataset, while 4 and 8 on OntoNotes for base
and large models. The size of dependency and SRL tag embeddings is 300. The number of
layers is set to 2 for both sub-graphs. The Base model is trained on a single Nvidia Tesla
V100 GPU with 16G memory, while training of Large model requires 32G memory. A
summary of training details and hyperparameters is shown in Table 3.2.

Feature Extraction: Gold features annotated on the OntoNotes 5.0 dataset are used in
this experiment. We use Stanford CoreNLP toolkit (Manning et al., 2014) to convert the an-
notated constituent trees into Stanford dependency trees (de Marneffe and Manning, 2008).
SRL labels are presented in the form of triples: (p, a, l), which refers to predicate, argument
and label, respectively. For the ACE 2005 dataset, we use the off-the-shelf parsers from
AllenNLP toolkit (Gardner et al., 2018) to obtain predicted dependency and SRL features.

3.6.2 Baselines and State-of-the-Art

We compare our proposed model with a range of end-to-end neural coreference resolution
models:

• E2E-COREF (Lee et al., 2017) (§2.6.1) is the first end-to-end neural model for coref-
erence resolution which jointly detects and groups entity mention spans.

• C2F-COREF (Lee et al., 2018) (§2.6.2) improves the E2E-COREF model (Lee et al.,
2017) by introducing the coarse-to-fine candidate antecedent pruning strategy and
the high-order span refinement mechanism. The ELMo embeddings (Peters et al.,
2018) are also leveraged to boost model performance.

• EE (Kantor and Globerson, 2019) uses cluster-level information to improve coref-
erence resolution by summing all mentions in the cluster as the approximation of
cluster representations.

5We empirically find that for datasets with singleton mentions annotated, our model benefits from larger
mention loss weight.
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MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1

OntoNotes English Test Data

E2E-COREF (Lee et al., 2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
C2F-COREF (Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
EE (Kantor and Globerson, 2019) 82.6 84.1 83.4 73.3 76.2 74.7 72.4 71.1 71.8 76.6

SpanBERT-base (Joshi et al., 2020) 84.3 83.1 83.7 76.2 75.3 75.8 74.6 71.2 72.9 77.4
Our baseline + SpanBERT-base∗† 83.6 83.9 83.7 75.1 76.5 75.8 74.2 71.6 72.9 77.5 (±0.1)
coref-HGAT + SpanBERT-base† 85.1 84.5 84.8 77.4 77.2 77.3 75.5 73.3 74.4 78.8 (±0.1)

SpanBERT-large (Joshi et al., 2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Our baseline + SpanBERT-large∗† 85.7 85.6 85.6 78.5 78.7 78.6 76.5 75.0 75.7 80.0 (±0.1)
coref-HGAT + SpanBERT-large† 86.8 86.3 86.5 80.0 79.7 79.8 78.0 75.9 76.9 81.1 (±0.2)

CorefQA (Wu et al., 2020) 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1

ACE 2005 English Test Data

SpanBERT-base (Lu and Ng, 2020) 84.2 81.9 83.1 74.7 74.1 74.4 66.3 73.5 69.7 75.7
Our baseline + SpanBERT-base∗† 84.8 83.1 83.9 75.4 75.9 75.6 65.4 73.9 69.4 76.3 (±0.2)
coref-HGAT + SpanBERT-base† 86.1 81.9 84.0 77.9 74.9 76.4 66.0 75.7 70.5 77.0 (±0.3)

SpanBERT-large (Lu and Ng, 2020) 86.9 84.0 85.4 77.5 79.6 78.5 69.2 76.6 72.7 78.9
Our baseline + SpanBERT-large∗† 87.7 83.9 85.8 80.0 77.2 78.6 66.9 77.7 71.9 78.7 (±0.3)
coref-HGAT + SpanBERT-large† 87.5 84.3 85.9 80.0 77.8 78.9 67.8 77.6 72.4 79.1 (±0.2)

Table 3.3: The results on the test set of the OntoNotes English dataset and ACE 2005
dataset compared with previous systems. The main evaluation metric is the averaged F1
of MUC, B3 and CEAFφ4. ∗ indicates our reimplemented baseline. † indicates average
performance over 5 runs using different random seeds.

• SpanBERT (Joshi et al., 2020) is based on the C2F-COREF model by replacing the
ELMo embeddings with pretrained SpanBERT embeddings to obtain better span-
level representation.

• CorefQA (Wu et al., 2020) is the state-of-the-art model that deals with the coref-
erence resolution problem using machine reading comprehension framework. The
MRC framework can benefit the CorefQA model from being pretrained on existing
large MRC datasets.
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3.6.3 Results

The average F1 score of three metrics – MUC, B3 and CEAFφ4 (§2.3) on the test set is
reported by using the official CoNLL-2012 evaluation scripts.6 Table 3.3 shows the results
of coref-HGAT +SpanBERT-base and large model compared with previous work on both
OntoNotes and ACE datasets. For the OntoNotes dataset, our model consistently outper-
forms the SpanBERT baseline (Joshi et al., 2020) on all three metrics with an improvement
of 1.4% and 1.5% on Avg. F1 score respectively, as well as our reimplemented baseline
(+1.3% and +1.1%), which is a substantial improvement by considering the difficulty of
this task. Similarly, we can also observe that our model improves over our replicated base-
line by a large margin, with an increase of 0.7% and 0.4%, respectively. Please note that,
since the ACE dataset does not contain gold dependency syntax and SRL semantics, we use
predicted features generated from third-party parsers. This demonstrates the effectiveness
of our heterogeneous graph-based method in leveraging syntactic and semantic features,
and such features are indeed useful in neural methods, even under the case when gold
features are not available. Note that we also show the current state-of-the-art CorefQA
model (Wu et al., 2020), which uses the span-prediction paradigm to compute pairwise
coreference scores. The model is compatible with our method, i.e., adding our proposed
graph attention and attentive integration layer on top of their document encoder with mi-
nor modification. The reason why we did not use it as a start baseline is due to hardware
limitations since it requires 128G GPU memory for training. Moreover, we suspect that
our model could gain further improvements when integrated with the CorefQA model, as
recent work (Zhang et al., 2020b,c) has shown that incorporating syntax and semantics into
BERT like model could achieve promising results on Machine Reading Comprehension
task.

3.6.4 Analysis

Ablation Study We perform ablation study on the test set to investigate the contribution
of different features in our model, with results shown in Table 3.4. We can see that both de-
pendency features and SRL labels individually contribute to the success of our final model
with a minor difference (+1.0% and 0.9%), and the gains are complementary to each other.

6http://conll.cemantix.org/2012/software.html

http://conll.cemantix.org/2012/software.html
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Avg. F1 ∆F1

Baseline 77.5 -

+ Dep 78.5 +1.0
+ SRL 78.4 +0.9
+ Dep & SRL 78.8 +1.3

GAT Layer = 1 78.5 -0.3
GAT Layer = 2 78.8 -
GAT Layer = 3 78.6 -0.2

Table 3.4: The Avg. F1 of coref-HGAT Base model by adding different features and stack-
ing different number of GAT layers on the test set of OntoNotes 5.0.

Combination Strategy Avg. F1 ∆F1

Parallel 78.8 -

Sequential (Dep, SRL) 78.6 -0.2
Sequential (SRL, Dep) 78.2 -0.6

Table 3.5: The Avg. F1 of coref-HGAT Base model using different ways to integrate
information from syntactic and semantic sub-graphs.

Effect of #Graph Layers From Table 3.4, we can see that both using one layer and three
layers hurt model performance. This indicates that first-order information is not effective
in capturing long-range dependencies while third-order information may cause overfitting
due to too much model capacity.

Effect of Combination Strategy We also experiment with different strategies to com-
bine information flow from two sub-graphs and present results on Table 3.5. The Par-

allel strategy means that we apply the information propagation mechanism on different
graphs separately and combine the information using the attentive integration layer in Sec-
tion 3.4.5. Sequential means that we sequentially perform information propagation with a
specific order (from syntactic graph to semantic graph, or vice versa). We observe that the
parallel strategy gives us the best result, and the sequential one does not introduce extra
gains compared to models with a single graph, especially for the SRL-Dep setting, which
hurts the semantic graph. This demonstrates that the parallel combination strategy could
preserve information from both sub-graphs, but the sequential way can make information
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Dep SRL F1 +∆F1

Baseline - - 77.5 -

Stanford CoNLL05-SRL 78.1 +0.6
Stanford CoNLL12-SRL 78.2 +0.7
Stanford Gold 78.4 +0.9
Biaffine CoNLL05-SRL 78.2 +0.7
Biaffine CoNLL12-SRL 78.4 +0.9
Biaffine Gold 78.6 +1.1

Table 3.6: Averaged F1 score of coref-HGAT+Base model with predicted features against
the baseline on the test set of OntoNotes 5.0.

from one graph overwhelmed by the other one.

Effect of Feature Quality To evaluate how the quality of features will affect the per-
formance, we use the biaffine dependency parser (Dozat and Manning, 2017) and SRL
parser (Shi and Lin, 2019) (denoted as CoNLL12-SRL) implemented by AllenNLP (Gard-
ner et al., 2018) as well as the Stanford Parser (Chen and Manning, 2014) to extract features.
The biaffine parser has roughly 3% LAS improvements compared to the Stanford CoreNLP
parser on Penn Treebank. In addition to this, in order to evaluate the impact of different se-
mantic role labelling parsers, we also implemented the same parser from Shi and Lin (2019)
but trained on the CoNLL 2005 dataset (Carreras and Màrquez, 2004), which achieves an
F1 of 81.9% on the out-of-domain setting. This parser is denoted as CoNLL05-SRL in our
experiment. Table 3.6 shows the performance of our model when using different depen-
dency parsers as well as predicted and gold SRL features. From the table, we can observe
that better parsers and parsers trained in closer domains result in higher Avg. F1 score, with
improvements of at most 0.9% when using both predicted features. Meanwhile, although
our model suffers a performance drop from imperfect features, it can still achieve robust
performance, outperforming the baseline with at least 0.6% improvement. Overall, high-
quality features are important to a good performance of the proposed model, and further
improvements are expected to see with the advances of both dependency and SRL parsers.
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Doc length #Docs Baseline Ours +∆F1

0 – 128 57 82.9 85.4 +2.5
129 – 256 73 81.8 83.1 +1.3
257 – 512 78 82.2 83.2 +1.0
512 – 768 71 77.7 78.2 +0.5

769 – 1152 52 76.8 78.6 +1.8
1153+ 12 67.5 70.3 +2.8

All 343 77.8 79.2 +1.4

Table 3.7: The Avg. F1 on the development set of the SpanBERT-base model and our
core-HGAT+Base model, broken down by document length following Xia et al. (2020).

Document Length In Table 3.7, we show the performance of our model against the base-
line on the development set as a function of document lengths. As expected, our model con-
sistently outperforms the baseline model on all document sizes, especially for documents
with lengths larger than 765 tokens. This demonstrates that the incorporated external syn-
tax and semantics are beneficial for modelling longer dependencies. However, our model
has a similar pattern as the baseline model, performing distinctly worse as document length
increases. This shows that the sentence-level syntax and semantics used in this work are
not sufficient to tackle the deficiency of modelling long-range dependency. One possible
solution is to leverage document-level features such as hierarchical discourse structures.

Mention Detection As a subtask for coreference resolution, the performance on detect-
ing mentions has a direct impact on the following coreference linking task, and recent
progress made on coreference resolution task has largely benefited from better mention
detectors (Lu and Ng, 2020). Therefore, to further understand our model, we analyse its
performance on the mention detection subtask. Figure 3.3 shows the mention detection
accuracy according to different mention span width ranges. We can see that our model
consistently performs better than the baseline model. The advantage becomes clearer and
clearer with the increase in span lengths, especially for longer spans which consist of more
than five tokens. This is another strong evidence showing that external syntax and seman-
tics make a difference in capturing long-range dependency and the resulted better mention
detection performance contributes to significant improvement on the final coreference res-
olution task.
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Figure 3.3: The performance of mention detection subtask on the development set of
OntoNotes 5.0, broken down by mention span width.

3.7 Error Analysis

In this section, we classify errors made by our proposed model into different types by
following previous work (Kummerfeld and Klein, 2013; Liu et al., 2020). Specifically,
we compare our model with the baseline on the following seven types of errors: (1) Span
Error: the predicted mention shares some content words with the gold one; (2) Conflated
Entities: two clusters belong to different entities are merged into the same cluster; (3) Extra
Mention: an extra mention is included in an entity cluster; (4) Extra Entity: an entity should
not exist; (5) Divided Entity: two clusters should have been merged into a larger cluster; (6)
Missing Mention: a mention should be introduced and included in a cluster; (7) Missing
Entity: an entire entity is missing.

With the compared results shown in Table 3.8, we can see that our proposed model con-
sistently makes fewer mistakes compared to the baseline on most error types, indicating the
effectiveness of leveraging external syntax and semantics. Specifically, our model performs
much better in capturing global entity-level information (114 fewer conflated entity errors)
and introducing fewer extra mentions and entities. Besides, it can also better identify valid



CHAPTER 3. INCORPORATING SYNTAX AND SEMANTIC ROLES 50

Error Baseline Ours

Span Error 269 195 (-74)
Conflated Entities 912 798 (-114)
Extra Mention 493 445 (-48)
Extra Entity 566 522 (-44)
Divided Entity 884 852 (-32)
Missing Mention 583 600 (+17)
Missing Entity 565 590 (+25)

Table 3.8: The number of each type of error made by our proposed model compared to the
baseline in all documents from the development set of OntoNotes 5.0.

mentions with the help of syntax and semantics. By contrast, our model achieves inferior
performance in terms of missing mentions and entities. This shows that our model is more
rigorous and careful in selecting entity mentions and creating clusters. But overall, by mak-
ing much fewer errors on most error types, our model achieves significant improvements
over the baseline on both precision and recall scores.

To further understand the errors made by our proposed model, we choose conflated en-
tity as the only error source and classify it into different sub-categories. Following previous
work (Joshi et al., 2019; Wu and Gardner, 2020), we randomly choose 100 conflated entity
errors made by our model from the development set of OntoNote 5.0 and show associated
examples and the number of errors in each sub-type in Table 3.9. From the table, we can
see that our model makes most mistakes on pronouns and tends to be confused by various
kinds of text string matches, which are consistent with our intuition.

For the pronouns, our model is most likely to link to wrong common noun phrases or
non-entity mentions. Sometimes when clusters only include pronoun mentions, our model
also tends to include irrelevant pronouns, which shows the necessity of introducing high-
order features to enrich pronoun representation. Besides, a similar bad performance is also
witnessed in first and second pronouns when pronouns contain the speaker information
and the entity representing the speakers does not explicitly appear in the context, thus
misleading the model. This phenomenon becomes much worse when speaker switching
happens frequently and many speakers participate in the conversation, which indicates the
necessity of improvements in dialogue modelling. Other errors such as exact match also
happen often. An example is shown in the third row of Table 3.9. The first Disney refers
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Category Example #

Pronoun ... a cross-sea bridge connecting Hong Kong, Zhuhai, and Macao
... after their return, Macao, and Hong Kong, the two special ... regions ... 70

Exact
Match

... heads toward Disney, trying to experience this mysterious park from close by.
The most important thing about Disney is that it is a global brand. 12

Head
Match

Off the coast there was a dramatic rescue by a cruise ship ship.
The ship was sinking by the second, and as the waves pounded against them ... 7

Otherwise
Match

Nixon concluded five days of private talks with Chinese leaders in Beijing ...
Beijing’s rulers complained ... U.S. interference in China’s domestic affairs. 2

Semantic
Proximity

... a picture that people have long been looking forward to started ...

... these well-known cartoon images once again caused Hong Kong ... 3

Others ... crossing from bases in neighboring Angola, violating U.N. ...
... Pretoria was attempting to sabotage next week’s elections in Namibia. 6

Table 3.9: Qualitative Analysis: examples of classifying the conflated entity error type
into different categories. We present two snippets for each category with bold mentions
referring to two incorrectly linked entities. # indicates the number of mistakes made in each
sub-class of 100 conflated entities randomly chosen from the development set of OntoNotes
5.0.

to the Hong Kong Disneyland, which is associated with the Facility named entity type;
while the second Disney means Disney the corporation. This information can actually be
inferred from its surrounding contexts park and brand. Therefore, more semantic and better
contextual information which helps distinguish mentions with exact text strings and similar
semantics should be leveraged for further improvement.

3.8 Resolution Classes

To further understand the behaviour of our proposed models, we compare its performance
with the baseline model on different types of entity mentions. Following Stoyanov et al.
(2009) and Lu and Ng (2020), we classify gold mentions into different resolution classes
as discussed below.

Proper Names Gold mentions associated with named entity types are assigned to proper

names on the OntoNotes dataset, while for ACE05 dataset, mentions whose head words
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are annotated with NAM are classified into this class. Moreover, four sub-classes are de-
fined. (1) e: a proper name belongs to the exact string match class if there exists at least
one preceding mention in its gold coreference cluster that exactly has the same string; (2)
p: a proper name belongs to the partial string match class if there exists at least one pre-
ceding mention in its gold coreference cluster that shares some words; (3) n: a proper
name belongs to the no string match class if there exists no preceding mention in its gold
coreference cluster that shares some words; and (4) na: a proper name belongs to the non-

anaphoric class if it does not refer to any preceding mention. For the OntoNotes dataset,
the first mention in each gold coreference cluster is regarded as non-anaphoric, while for
the ACE dataset, the non-anaphoric class also includes singleton mentions.

Common NPs Gold mentions without named entity types belong to Common NPs on the
OntoNotes dataset, and mentions with nominal head words are assigned to this class on the
ACE05 dataset. Similarly, we define four sub-classes: (5) e; (6) p; (7) n; and (8) na.

Pronouns Five pronoun sub-classes are defined. (9) 1/2: 1st and 2nd person pronouns
(e.g., you); (10) G3: gendered 3rd person pronouns (e.g., she); (11) U3: ungendered 3rd
person pronouns (e.g., they); (12) oa: any anaphoric pronouns that do not belong to (9),
(10), and (11) (e.g., demonstrative pronouns); and (13) na: non-anaphoric pronouns (e.g.,
pleonastic pronouns).

Results For performance measurements, we follow Lu and Ng (2020) to use mention
detection recall (MD) and resolution accuracy (RA). For MD, we count the percentage
of gold mentions that are correctly detected in each resolution class; while for RA, we
compute the percentage of correctly detected mentions that are correctly resolved.7

Table 3.10 shows the performance of the baseline and our proposed model on each
resolution class. Firstly, we can see that both models perform the best on proper names,
followed by common nouns and pronouns. Secondly, by analysing the fine-grained classes,
the exact match class in proper names and common nouns are easier than the partial match

one, which in turn is easier than the no string match class. For pronouns, the 3rd person

7A gold anaphoric mention is regarded as correctly resolved if its predicted antecedent is in the corre-
sponding gold coreference cluster. Moreover, it will be considered correctly resolved for a gold non-anaphoric
mention if it is predicted to have a dummy antecedent.
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OntoNotes 5.0 ACE 2005

Baseline Ours Baseline Ours
Class Size % RA MD RA MD Size % RA MD RA MD

PN-e 15.52 96.5 93.9 95.4 94.1 15.61 95.8 97.3 97.4 97.3
PN-p 6.06 89.7 86.0 91.1 87.7 2.96 81.1 88.7 79.7 91.5
PN-n 6.63 86.2 88.8 86.9 88.0 2.36 67.9 83.5 65.0 85.4
PN-na 6.74 94.2 82.0 95.7 83.5 11.90 84.4 88.2 85.4 89.3

CN-e 6.17 96.3 91.5 96.7 91.1 3.86 88.4 86.7 88.2 86.9
CN-p 8.60 82.8 81.0 84.8 80.8 5.31 64.2 88.8 60.5 89.1
CN-n 3.39 74.1 68.9 72.4 69.4 3.96 60.6 83.8 57.4 86.6
CN-na 15.47 91.6 69.5 93.3 70.8 18.24 89.4 84.4 91.3 87.3

PR-1/2 11.64 93.7 95.8 94.3 95.3 13.28 87.3 99.9 88.2 99.7
PR-G3 5.99 95.8 99.6 95.9 99.3 6.84 93.4 99.7 93.5 99.9
PR-UG3 10.14 87.0 95.1 88.6 94.4 5.71 81.5 97.6 82.5 98.3
PR-oa 1.45 65.9 63.5 66.7 63.9 1.22 69.2 86.7 66.7 86.7
PR-na 2.20 54.2 88.4 56.4 85.8 8.73 48.6 88.7 50.5 89.1

Table 3.10: The results of resolution classes in the development set of OntoNotes 5.0 and
ACE 2005. Each row contains the performance on each fine-grained resolution class. Size
represents the percentage of mentions in a specific resolution class over all mentions. RA
and MD means resolution accuracy and mention detection recall, respectively.

gendered pronoun is the easiest one, followed by the 1st/2nd person noun, while both
models find it difficult to resolve other pronouns such as reflective pronouns.

Thirdly, we find that our model gains most of its improvements on non-anaphoric men-
tions, showing its superiority in dealing with the difficulty of anaphoricity determination,
with improvements up to 2.2% RA. Moreover, the improvements on 3rd ungendered pro-
nouns are also significant (1.6% and 1.0%). This demonstrates that the harder a resolution
class is, the more significant our model’s improvement is. Besides, this also shows that the
leveraged syntax and semantics help resolve traditionally difficult anaphors. Overall, by
maintaining comparable performance in other easier classes simultaneously, our model has
achieved significantly better final results on these two datasets compared with the baseline.

3.9 Summary

In this chapter, we propose a heterogeneous-graph based model to enhance coreference
resolution by effectively leveraging dependency tree structures and SRL semantic features.
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Particularly, nodes of different granularity in the graph propagate and aggregate informa-
tion to and from neighbour nodes to obtain both syntactic and semantic augmented rep-
resentation. Moreover, an attention-based mechanism is used to dynamically aggregate
such augmented information. Experiments on the OntoNotes 5.0 benchmark and ACE
2005 dataset confirm the effectiveness of our proposed model with significant improvement
achieved against the strong baseline. Future work will focus on applying other features,
such as constituent parsing trees and WordNet.



Chapter 4

Evaluating the Utility of Constituent
Syntax

4.1 Introduction

Recent attempts show that graph-based methods for leveraging dependency syntax have
benefited various neural models (Marcheggiani and Titov, 2017; Bastings et al., 2017;
Wang et al., 2020). By contrast, encoding constituent syntax trees using graph-related
techniques is less explored. Previous work either employed binarized trees (Wang et al.,
2007) or designed TreeLSTM to encode tree structures (Tai et al., 2015). But they do not
take full advantage of rich syntactic information and relationships between nodes.

In this chapter, we argue that incorporating constituent syntax is natural for corefer-
ence resolution. In constituent trees, the information encoding boundaries of non-terminal
phrases is explicitly presented. Extra linguistic labels also reveal linguistic constraints for
coreference resolution (Ng, 2010)(e.g., are both noun phrases definite?). By contrast, such
information is either implicitly embedded or not revealed in the dependency tree (Chap-
ter 3). Moreover, constituent syntax has long been employed in coreference resolution task.
Hobbs (1978) uses a rule-based and breadth-first traversal of parse trees to resolve referents
of given mentions. Luo and Zitouni (2005) design various features from constituent trees
guided by the Binding theory (Chomsky, 1988), which describes the constraints on finding
antecedents of English pronouns. Non-anaphoric information encoded in constituent trees
is also employed to benefit the anaphoricity determination task using tree kernel-based

55
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methods (Zhou and Kong, 2009).
In this chapter, we propose a neural coreference resolution model using constituent syn-

tax, as an extension of Joshi et al. (2019). Trieu et al. (2019) and Kong and Jian (2019)
apply constituent trees as hard constraints to filter invalid mentions. However, they fail to
leverage the hierarchical constituent structures or encode such information using complex
hand-engineered path features. In contrast, our method builds a graph consisting of termi-
nal and non-terminal nodes and applies graph neural networks to encode such structures
more flexibly.

The most similar work compared to ours is that of Marcheggiani and Titov (2020),
which applies Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) over con-
stituent trees for Semantic Role Labelling. This work differs from Marcheggiani and Titov
(2020) both in terms of application (SRL vs Coreference), and important aspects of the
algorithm: 1) we extend the plain constituent trees by adding edges with higher orders
and interpret parsing trees with dual graphs to capture forward and backward views (Zhao
et al., 2020; Ribeiro et al., 2019); 2) we use a novel span yield enhanced method to rep-
resent constituent nodes (§4.3.2.1) instead of initializing them with zero vectors, and we
believe our method is more natural to conference resolution and consistent with the span
representations. We also design a new information propagation mechanism over the under-
lying extended graph, where constituent node representations are updated iteratively using
bidirectional graph neural networks, and explicit hierarchical syntax and span boundary
information are propagated to enhance the contextualized token embeddings. We conduct
experiments on the English and Chinese portions of OntoNotes 5.0 (Pradhan et al., 2012)
benchmark, and show that our proposed model significantly outperforms a strong baseline
and achieves new state-of-the-art performance on the Chinese dataset.

4.2 Related Work

External syntax has long been used for enhancing neural models to benefit a variety of NLP
tasks. Socher et al. (2013) and Tai et al. (2015) utilise recursive neural networks for encod-
ing constituent trees through creating the representation of constituent terminal nodes re-
cursively. Nevertheless, such a method is less efficient than applying graph neural networks
since the recursive way of encoding trees means that later steps should depend on earlier
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ones. Moreover, nodes on top layers, especially the root node, encode the information of
the entire tree, which will make it prone to noisy and imperfect features. By contrast, our
method, which uses graph attention networks, only encodes a small part of the constituent
tree around the central updated node, making it more robust when only predicted syntax is
available. The utilisation of syntax for NLP tasks in later time mainly relies on graph neural
networks to capture the structural information. Marcheggiani and Titov (2017); Bastings
et al. (2017) use graph convolutional networks to leverage dependency syntax to improve
semantic role labelling (SRL) and machine translation tasks. Wang et al. (2020) proposes
to employ reshaped dependency syntax trees to improve aspect-based sentiment analysis.

Compared to dependency syntax, the constituent syntax has less been explored. Wang
et al. (2019b) uses the full representation of constituency parsing trees (Gómez-Rodrı́guez
and Vilares, 2018) as word-level features to improve a SRL model. Trieu et al. (2019) and
Kong and Jian (2019) treat constituent trees as signals to filter invalid candidate mention
spans for coreference resolution task. However, their methods either ignore the hierarchical
structures encoded in parsing trees or create complex hand-designed path-related features.
In contrast, our method is more flexible, which only utilises graph attention networks and
node representations are learned automatically. Compared to ours, the most similar work
is the Marcheggiani and Titov (2020)’s SpanGCN model for the SRL task, which leverages
GCNs to encode the structure of constituent parsing trees and uses information propagation
mechanisms to enhance word-level features with learned constituent node representations.
Nevertheless, our method differs in extending plain parsing trees with higher-order edges
(grandparent-grandchild edges) and dual graphs capturing the forward and backward views.
More importantly, we apply graph attention networks to encode constituent syntax trees for
coreference resolution rather than the SRL task. We demonstrate that the introduced con-
stituent parse trees and our encoding methods can improve a strong coreference resolution
baseline by a large margin and achieve comparable performance with the state-of-the-art
model in English and establish new state-of-the-art performance in Chinese.

4.3 Proposed Model

Our model is based on Joshi et al. (2019) (§2.6.1 and §2.6.2), which we extend by in-
tegrating constituent syntactic features. This work is also different from the proposed
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Figure 4.1: The overall architecture of our proposed model.

method in Chapter 3: we incorporate constituent parse trees rather than dependency trees
and introduce extra features on top of vanilla parse trees to capture longer dependencies
among nodes. It first encodes the whole document using the sliding-window approach
(Section 4.3.1), then a constituent syntax based graph which consists of multiple types of
edges is constructed (Section 4.3.2). An information propagation mechanism is applied
to update the representation of constituent nodes and propagate enriched constituent node
embeddings to enhance the contextualized basic token representations (Section 4.3.3 and
4.3.4). Finally, enhanced token representations will be employed to form mention span
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embeddings and compute pairwise coreference scores. Figure 4.1 shows the overall archi-
tecture of our proposed model.

4.3.1 Document Encoder

SpanBERT (Joshi et al., 2020) is a pretrained language model which focuses on pretraining
span representations through span boundary detection task. Following previous work (Joshi
et al., 2019), we use SpanBERT as the document encoder and finetune the SpanBERT
model for coreference resolution.

BERT-based models are pretrained to encode single sentence or sentence pairs with at
most 512 word pieces. However, a document normally contains more than 512 tokens.
Previous work chooses to split documents into independent segments in order to fit long
documents. But one drawback of this method is that it has limited modelling capacity as
tokens can only attend to other tokens within the same segment, especially for tokens at
the boundary of each segment (Joshi et al., 2019). Rather than using independent seg-
ments for encoding long documents, we follow previous work (Wu et al., 2020) to create
overlapped segments. Specifically, we use a sliding-window approach to create T -sized
segments with a stride of T

2
tokens. Our preliminary experimental results show that the

sliding-window approach performs slightly better than the independent setup (Joshi et al.,
2019). Besides, speaker identities are crucial for coreference resolution, especially for pro-
nouns in dialogues and multi-party conversations. Unlike previous methods (Lee et al.,
2017, 2018; Joshi et al., 2019) which convert the speaker information of two compared
mentions into binary features (1 if a pair of mentions appear in the utterances of the same
speaker and 0 otherwise), we instead follow Wu et al. (2020) to directly insert the speaker’s
name at the beginning of the corresponding utterance. Therefore, the overlapped segments
with attached speaker information are then encoded by the SpanBERT encoder to obtain
contextualized representation, which can be denoted as Hw = (h1,h2, . . . ,hn), where
hi ∈ Rd and n is the document length.

4.3.2 Graph Construction

For each sentence in the document, we have an associated constituent tree which con-
sists of words (terminals) and constituents (non-terminals). Therefore, we have two types
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of nodes in our graph: token nodes (T = {t1, t2, . . . , tn})1 and constituent nodes (C =

{c1, c2, . . . , cm}), where n and m are the number of token and constituent nodes, respec-
tively. Moreover, for a given constituent node ci, we use START(i) and END(i) to denotes
its start and end token indices.

4.3.2.1 Node Initialization

We use Hw to initialize the features of token nodes, while given a constituent node ci ∈ C,
the node representation h(ci) is defined as:

h(ci) = [hSTART(i);hEND(i); etype(si)] (4.1)

where hSTART(i) and hEND(i) are the contextualized embeddings of start and end tokens of
constituent ci and etype(si) is the constituent type embeddings. Therefore, we could obtain
a set of initialized constituent node representations: Hc = {h(c1),h(c2), . . . ,h(cm)}.

4.3.2.2 Edge Construction

An example of graph structures is shown in Figure 4.2.

Constituent-Constituent We design two categories of edges in our graph, namely parent-

child and grandparent-grandchild, to capture longer-range dependencies. For each edge
category, we further add reciprocal edges for each edge in the graph and label them with
forward and backward types, respectively. Additionally, self-loop edges are added to each
node in the graph. Thus, the edges are constructed based on following rules:

• A pair of parent-child and child-parent edges between node ci and cj are con-
structed if and only if these two nodes are directly connected in the constituent tree.

• A pair of grandparent-grandchild and grandchild-grandparent edges between
node ci and cj are constructed if and only if node ci can reach node cj using two
hops, and vice versa.

1We use token and word interchangeably throughout this chapter.
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Figure 4.2: An example of our constructed graph based on constituent parse trees by adding
forward and backward edges and higher-order edges.

Constituent-Token A token node wi is linked to cj if it is the left or rightmost token in
the yield of cj . Such edges are made unidirectional to make sure that information can only
be propagated from constituent nodes to token nodes, which aims to enrich basic token
representations with span boundary information and the hierarchical syntax structures.

4.3.3 Graph Encoder

We use a Graph Attention Network (GAT) (Veličković et al., 2018) to update the represen-
tation of constituent nodes and propagate syntactic information to basic token nodes. For
a node i, the attention mechanism allows it to selectively incorporate information from its
neighbour nodes:

αij = softmax(σ(aT [Whi;Whj])) (4.2)

h′i = ‖Kk=1ReLU(
∑
j

αkijW
khj) (4.3)
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where hi and hj are embeddings of node i and j, aT , W and Wk are trainable param-
eters. σ is the LeakyReLU activation function (Xu et al., 2015). ‖ and [; ] represent the
concatenation operation. Eqs. 4.2 and 4.3 are designated as an operation:

h′i = GAT(hi,hj|j ∈ Ni) (4.4)

where Ni is the set of neighbour nodes of the target node i, hi and hj are the embeddings
of target and neighbour node and h′i is the updated embedding of target node.

Bidirectional GAT Layer We design a bidirectional GAT layer to model the constituent-
constituent edges with directions illustrated in §4.3.2.2. Specifically, for a given constituent
node ci, we could obtain its neighbour nodes with edge type k in forward (outgoing) and
backward (incoming) directions: N kf

ci
and N kb

ci
, respectively. Then we use two separate

GAT encoders to derive the updated representation of node ci in different directions:

hkfci = GAT(hci ,hcj |cj ∈ N kf
ci

) (4.5)

hkbci = GAT(hci ,hcj |cj ∈ N kb
ci

) (4.6)

Then the updated representation of constituent node ci is obtained by the summation of
the representations of two directions: hkci = hkfci + hkbci .

Multi-type Integration Layer In order to aggregate updated node representations using
different types of edges, we use the self-attentive mechanism (Lee et al., 2017):

αci,k = softmax(FFNN(hkci)) (4.7)

hci =
K∑
k=1

αci,kh
k
ci (4.8)

where FFNN is a two-layers feedforward neural network with ReLU function. Further-
more, we designate an operation to summarise above procedures:

h′ci = Multi-BiGAT(hci ,hcj |cj ∈ Nci) (4.9)
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4.3.4 Information Propagation

With the above-defined operations, we can design the information propagation mechanism
to enable information flow from constituent nodes to basic token nodes through iterative up-
dates. First, we update the constituent node representation using our defined bidirectional
GAT layer with multi-type edges:

hlci = Multi-BiGAT(hl−1ci
,hl−1cj

|cj ∈ Nci) (4.10)

where hl−1ci
is the constituent node representation from previous layer l − 1 and h0ci is the

initialized embedding.
Then the updated constituent node representation propagate information to update the

token node representation through constituent-token edges:

hli = GAT(hl−1i ,hlcj |cj ∈ Ni) (4.11)

where hl−1i is the token representation from previous layer l − 1 and h0
i is the SpanBERT

encoding.
The updated token representation is utilised to reconstruct the updated constituent node

embeddings using Eq. 4.1, which will be employed in the next graph encoder layer. After
L iterations, we could obtain the final constituent syntax enhanced token representations,
which can be denoted as Hc

w. We then use a gate mechanism to infuse the syntax-enhanced
token representation dynamically:

f = σ(Wg · [Hw;Hc
w] + bg) (4.12)

H′w = f �Hw + (1− f)�Hc
w (4.13)

where Wg and bg are trainable parameters, � means element-wise multiplication and σ is
the logistic sigmoid function.

Finally, the constituent syntax augmented token representation H′w can be used to form
span representation and compute pairwise coreference score. More details about how to
construct span emebddings and compute coreference scores have been discussed thor-
oughly in Section 2.6.1 and 2.6.2.

Please note that the information propagation mechanism proposed here is different from
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English Chinese
Train Dev Test Train Dev Test

#docs 2802 343 348 1810 252 218
#mentions 155558 19155 19764 102853 14183 12801
#clusters 35142 4545 4532 28256 3875 3559

Table 4.1: The statistics of the English and Chinese portions of OntoNotes 5.0 dataset in
terms of the number of documents, mentions and entity clusters.

that of Chapter 3 in terms of aspects of algorithms: 1) different information propagation
path among different kinds of nodes; 2) we additionally introduce edges in forward and
backward directions and higher-order edges to capture longer-range dependencies, and thus
newly designed graph attention layers are employed to model additionally introduced fea-
tures.

4.4 Experiments

4.4.1 Experiment Setup

Dataset Our model is evaluated on the English and Chinese portions of OntoNotes 5.0
dataset (Pradhan et al., 2012). The English corpus consists of 2802, 343 and 348 documents
in the training, development and test splits, respectively, while the Chinese corpus contains
1810, 252 and 218 documents for train/dev/test splits. The model is evaluated using three
coreference metrics: MUC, B3 and CEAFφ4 and the average F1 score (Avg. F1) of the
three are reported. We use the latest version of the official evaluation scripts (version 8.01),2

which implements the original definitions of the metrics. The statistics of these two datasets
are shown in Table 4.1.

Implementation Details We reimplement the C2F-COREF+SpanBERT3 baseline using
PyTorch. For English model, we use SpanBERT-base and large model to encode docu-
ments;4 while for Chinese, we use BERT-wwm-base and RoBERTa-wwm-ext-large5 as the

2http://conll.cemantix.org/2012/software.html
3https://github.com/mandarjoshi90/coref
4https://github.com/facebookresearch/SpanBERT
5https://github.com/ymcui/Chinese-BERT-wwm

http://conll.cemantix.org/2012/software.html
https://github.com/mandarjoshi90/coref
https://github.com/facebookresearch/SpanBERT
https://github.com/ymcui/Chinese-BERT-wwm
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English Chinese
Hyparameters SpanBERT-B SpanBERT-L BERT-B RoBERTa-L

Max span width 30 30 30 30
Max top antecedents 50 50 50 50
Max training segments 3 3 3 3
Top span ratio 0.4 0.4 0.3 0.3
Max segment length 384 512 384 512
BERT learning rate 2× 10−5 1× 10−5 2× 10−5 1× 10−5

Task learning rate 3× 10−4 5× 10−4 5× 10−4 5× 10−4

Epochs 40 40 40 40
Num of GAT layers 2 2 2 2
Num of GAT heads 4 8 4 8
Node type embedding size 300 256 300 256

Table 4.2: The best hyperparamters used in this experiment.

document encoders. As suggested by Xu and Choi (2020), we discard the high-order span
representation refinement module. Graph attention networks and the information propa-
gation module are implemented based on Deep Graph Library (Wang et al., 2019a).6 We
follow (Lee et al., 2017) to use the same marginal log-likelihood based optimization ob-
jective. Besides, mention detection loss is also added as described in Section 3.5. Gold
constituent parsing trees annotated on the datasets are used in this experiment.

Hyperparameter Settings For the English model, we follow most of the parameters in
Section 3.6.1, while for the Chinese model, we have several hyperparameters to tune using
grid search. Specifically, we search for: 1) max span with (maximum number of words a
candidate mention contains) out of {20, 25, 30}; 2) number of training epochs out of {40,
50, 60}; 3) top span ratio (the fraction of candidate mentions with top mention scores that
are kept for mention linking) out of {0.3, 0.35, 0.4}; 4) task parameters learning rate out of
{1e-4, 2e-4, 3e-4, 4e-4, 5e-4}; 5) BERT parameters learning rate out of {1e-5, 2e-5, 3e-5,
4e-5, 5e-5}; 6) mention loss ratio out of 1, 10, 100; 7) number of graph layers out of {2,
3, 4} and 8) number of graph attention heads out of {4, 8, 16}. The best hyperparameter
setting is shown in Table 4.2.

6https://github.com/dmlc/dgl

https://github.com/dmlc/dgl
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Training Details Both BERT parameters and task parameters are trained using Adam
optimizer (Kingma and Ba, 2015), with a warmup learning scheduler for the first 10% of
training steps and linear decay scheduler decreasing to 0, respectively. Each model is run
five times using different random seeds and the averaged performance is reported.

The training of base model is conducted on a single Nvidia Telsa V100 GPU with 16G
memory, while training large model requires 32G memory. Training base model takes
about 22 hours while training of large model can be finished within 32 hours.

Baselines and State-of-the-Art We compare our proposed model with a variety of previ-
ous competitive models: Clark and Manning (2016) is a neural network based model which
incorporates entity-level information. E2E-COREF (Lee et al., 2017) is the first end-to-end
neural model for coreference resolution which jointly detects and groups entity mention
spans. Kong and Jian (2019) improves the Lee et al. (2017)’s model by treating constituent
parsing trees as constraints to filter invalid candidate mentions and encoding the traversal
node sequence of parsing trees to enhance contextualized document embeddings. C2F-
COREF (Lee et al., 2018) extends the Lee et al. (2017)’s model by introducing a coarse-

to-fine candidate mention pruning strategy and a higher-order span refinement mechanism.
Joshi et al. (2020) improves over Lee et al. (2018) with the document encoder replaced
by SpanBERT. CorefQA (Wu et al., 2020) employs the machine reading comprehension
framework to recast the coreference resolution problem as a query-based span-prediction
task, which achieves current state-of-the-art performance. Jiang and Cohn (2021) is the
method we proposed in Chapter 3 which enhances neural coreference resolution by incor-
porating dependency syntax and semantic role labels using heterogeneous graph attention
networks.

4.4.2 Main Results

Table 4.3 shows the results of our model compared with a range of high-performing neural
coreference resolution models on English and Chinese. For English, we observe that our
replicated baseline surpasses the SpanBERT baseline (Joshi et al., 2020) by 0.7% and 1.1%,
demonstrating the effectiveness of the sliding-window based document encoding approach
and modified representations of speaker identities (§4.3.1). Our model further improves
the replicated baseline significantly with improvements of 1.9% and 1.4%, respectively, a
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MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1

OntoNotes English Test Data

E2E-COREF (Lee et al., 2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
C2F-COREF (Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0

SpanBERT-base (Joshi et al., 2020) 84.3 83.1 83.7 76.2 75.3 75.8 74.6 71.2 72.9 77.4
Our baseline + SpanBERT-base∗† 83.9 84.2 84.0 76.2 76.9 76.6 74.3 73.1 73.7 78.1 (±0.1)
Jiang and Cohn (2021) + SpanBERT-base† 85.1 84.5 84.8 77.4 77.2 77.3 75.5 73.3 74.4 78.8 (±0.1)
Our model + SpanBERT-base† 85.6 85.8 85.7 78.2 79.0 78.6 76.3 74.8 75.5 80.0 (±0.2)
CorefQA + base (Wu et al., 2020) 85.2 87.4 86.3 78.7 76.5 77.6 76.0 75.6 75.8 79.9

SpanBERT-large (Joshi et al., 2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Our baseline + SpanBERT-large∗† 86.0 86.0 86.0 79.6 79.6 79.6 77.2 75.8 76.5 80.7 (±0.1)
Jiang and Cohn (2021) + SpanBERT-large† 86.8 86.3 86.5 80.0 79.7 79.8 78.0 75.9 76.9 81.1 (±0.2)
Our model + SpanBERT-large† 87.3 87.1 87.2 81.1 80.9 81.0 78.8 77.2 78.0 82.1 (±0.2)
CorefQA + large (Wu et al., 2020) 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1

OntoNotes Chinese Test Data

Clark and Manning (2016) 73.9 65.4 69.4 67.5 56.4 61.5 62.8 57.6 60.1 63.7
Kong and Jian (2019) 77.0 64.6 70.2 70.6 54.7 61.6 64.9 55.4 59.8 63.9
Our baseline + BERT-wwm-base∗† 76.7 70.9 73.7 68.3 62.4 65.2 67.4 60.8 63.9 67.6 (±0.3)
Our model + BERT-wwm-base† 84.1 78.6 81.3 77.4 71.5 74.4 76.5 70.0 73.1 76.3 (±0.2)

Our baseline + RoBERTa-wwm-ext-large∗† 79.9 72.2 75.8 71.6 64.3 67.7 70.8 62.8 66.5 70.0 (±0.3)
Our model + RoBERTa-wwm-ext-large† 85.8 80.9 83.3 79.8 74.5 77.0 78.7 72.9 75.7 78.7 (±0.2)

Table 4.3: The results on the test set of the OntoNotes English and Chinese shared task
compared with previous systems. The main evaluation metric is the averaged F1 of MUC,
B3 and CEAFφ4. ∗ indicates our reimplemented baseline. † indicates average performance
over 5 runs using different random seeds.

result which is also comparable to the state-of-the-art performance of CorefQA (Wu et al.,
2020).7 Improvements can also be observed compared to our proposed method (Jiang
and Cohn, 2021) in Chapter 3 (1.2% and 1.0%). For Chinese, our replicated baseline
has already achieved state-of-the-art performance. With the help of constituent syntax,
our model again beats the baseline model with substantial improvements of 8.7%. This
indicates that constituent syntax is far more useful to Chinese than English, and we suspect
that word-level segmentation encoded in constituent trees brings extra benefits in Chinese.

7We do not use their model as a baseline mainly due to hardware limitations.
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Modified Module Avg. F1 ∆F1

- 80.0 -
Vanilla Tree 79.7 -0.3
No Gate 77.3 -2.7
Only Type Embedding 79.5 -0.5
Dependency Syntax 79.2 -0.8

Table 4.4: Results when modifying different modules compared to our base model on the
English test set.

4.4.3 Analysis

Effects of Constituency Quality To evaluate how the quality of parsing trees will affect
the performance, we test two off-the-shelf parsers (Zhang et al., 2020a) (achieving 95.26%
and 91.40% F1 score on PTB and CTB7) to obtain predicted trees. When using predicted
trees with our base model, we get Avg. F1 of 78.7% (+0.6%) and 73.0% (+5.4%) on both
languages, which consistently outperforms the baseline. However, the performance is still
worse than using gold trees, indicating the necessity of high-quality constituency parsers.

Ablation Study We modify several components of our model to validate their effects. 1)
we use vanilla constituent parsing trees by only keeping parent-child edges; 2) we remove
the gating mechanism and directly use representations encoded via graph neural networks;
3) we change the way of representing constituent node to initialize only with type embed-
dings; 4) we incorporate dependency trees rather than constituent trees.8

From Table 4.4 we observe that: 1) The dual graph and different edge types show
positive impacts in capturing long-range dependencies; 2) Removing the gate mechanism
results in the worst performance, which is below the baseline. We suspect that some in-
formation such as position embeddings may be lost after the graph attention network; 3)
Although only using type embeddings to initialize constituent node representations also
yields competitive performance, our span yield enhanced initialization method can capture
span-boundary information more effectively; 4) Incorporating dependency syntax instead

8The graph is constructed by adding edges between two token nodes starting from head to dependent.
Higher order edges and dual graphs are also employed. This is different from the method for encoding
dependency trees proposed in Chapter 3, where we do not add dual graphs and higher-order edges.
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Dataset Model
Mention Length

Overall
1-2 3-4 5-7 8-10 11+

English
baseline + SpanBERT-base 90.8 83.2 78.5 69.9 63.8 87.4
our method + SpanBERT-base 91.4 85.0 80.6 76.1 73.7 88.7

Chinese
baseline + BERT-wwm-base 84.4 78.6 71.1 70.0 67.0 79.3
our method + BERT-wwm-base 88.7 86.5 80.8 81.0 78.7 86.0

Table 4.5: The F1 performance of mention spans with different lengths on the English and
Chinese OntoNotes dataset.

Dataset Methods Avg. F1 ∆F1

English
Baseline 78.1 -
Our Method 80.0 +1.9
Baseline + Mention Filter 77.3 -0.8

Chinese
Baseline 67.6 -
Our Method 76.3 +8.7
Baseline + Mention Filter 71.8 +4.2

Table 4.6: Results when utilising syntactic parse trees as mention filter compared to our
base model on the English test set.

of constituent syntax achieves inferior performance.9

Mention With Different Lengths Table 4.5 shows the performance comparison in terms
of different mention lengths on both datasets. As shown in the table, we can observe that
our proposed model consistently outperforms the baseline model for both two languages.
This indicates that the improved overall performance in the coreference resolution task has
benefited largely from better mention detectors, which is consistent with our previous find-
ings in Section 3.6.4 and Lu and Ng (2020). The performance gain is more significant for
mentions with longer length on both languages, demonstrating that leveraging constituent
syntax is highly effective for modelling long-range dependencies.

9Using the combination of constituent and dependency syntax also does not give us a performance boost
but requires much more training time.
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Constituent Tree as Mention Filter An alternative use of syntax is through constraining
mention types. We use the constituent parse tree as hard constraints on top of the base-
line to filter out invalid candidate mentions, assuming that only candidate mentions that
have matched phrases in the parse tree are valid. We observe that about 99% of gold men-
tions correspond to a small set of syntactic phrases and POS types.10 We thus use these
two phrase sets as filters to prune unlikely candidate mentions. Table 4.6 shows the corre-
sponding results. We can find that the syntactic constraint harms the performance slightly
on the English baseline (-0.8%) but improves the Chinese baseline by 4.2%. However, in
both cases this constrained baseline is substantially worse than using the syntax tree as part
of our neural model, as proposed in this chapter (with scores of 2.7% and 4.5% lower for
English and Chinese, respectively).

4.5 Summary

In this chapter, we successfully leveraged constituent parsing trees with added higher-order
edges and dual graphs, which are encoded via bidirectional graph attention networks and
our designed information propagation mechanism. Experimental results confirm the supe-
riority of our proposed method with significant improvements achieved against the strong
baseline on English and new state-of-the-art performance established on Chinese.

10en: 99.63% gold mentions are included in the set of phrases tagged with NP, NML, PRP, PRP$, WP,
WDT, WRB, NNP, VB, VBD, VBN, VBG, VBZ, VBP (Wu and Gardner, 2020). zh: the set of VV, NT, PN,
DFL, NR, NP, QP, NN covers 99.79% gold mentions.



Chapter 5

Conclusions

In this thesis, we leverage the potential of syntax in the form of dependency trees and
constituent parse trees and semantics in the form of semantic role labels in the coreference
resolution task. Our empirical results confirm the positive impacts of incorporating syntax
and semantics in neural end-to-end coreference resolution models.

In Chapter 2, we walked through the history of coreference resolution, which dates
back to the early 1970s. We first gave a detailed description of early coreference resolution
systems, which are mainly driven by heuristics and hand-written rules. Next, we talked
about hand-designed feature-based statistical machine learning methods for coreference
resolution, which were discussed according to different model paradigms. Lastly, we pre-
sented recent progress in neural network-based coreference resolution models with detailed
model architecture descriptions. The strengths and weaknesses of all reviewed methods in
the literature were also thoroughly discussed.

Chapter 3 proposed a heterogeneous graph-based method to improve coreference reso-
lution by effectively incorporating dependency syntax and SRL semantics. Empirically, our
proposed method achieves promising results and significantly outperforms a strong base-
line (Joshi et al., 2020). We demonstrate that the proposed model can indeed capture those
structures to benefit coreference reasoning through our detailed analysis. We also evalu-
ated our model on different mention sub-categories, where results show that it especially
gains improvements on traditionally difficult resolution classes. However, the proposed
model still suffers and can be easily fooled in resolving pronouns, especially in dialogues
and multi-party conversations. We also find that our model is limited by its dependency on
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dependency syntactic and SRL parsers, indicating its good performance cannot be easily
maintained in real-world settings when gold parses are not available.

In Chapter 4, we first argued that compared to dependency syntax, the constituent syn-
tax is more natural to coreference resolution task because of the embedded explicit span
boundary information. We introduced graph-based methods to effectively leverage con-
stituent syntax by adding higher-order edges and interpreting parse trees using different
views. We conducted large-scale experiments on English and Chinese, and empirical re-
sults show that our model achieves state-of-the-art performance on Chinese while outper-
forms a strong baseline and our proposed method (Jiang and Cohn, 2021) in Chapter 3 on
English by a large margin. Besides, we also analysed the performance of our model on
the mention detection subtask. The result confirms that the leveraged constituent syntax
is indeed helpful in identifying mention span boundaries. Lastly, we compared our graph-
based method with the mention-filter method, which treats constituent parse trees as hard
constraints to filter invalid candidate mentions. The result again shows the superiority of
our proposed method.

5.1 Future Directions

Although our two proposed methods have shown strong performance, there are still some
promising avenues remained to explore for future research. We identify three possible
future research directions in this section.

Different Ways to Incorporate Syntax The dependency syntax captures the relations
between pairs of words, and the self-attention mechanism (Vaswani et al., 2017) also learns
to compute the importance scores of word pairs. Thus, it is possible that we can incorporate
the dependency tree into the self-attention head of pretrained language models by encour-
aging words to attend to their specific head and dependent words corresponding to the
syntactic structure of the sentence. Through this method, we expect the self-attention can
learn syntax-constrained knowledge, thereby forming syntax-enhanced word representa-
tions. Another way to do this would be to generate dependency trees as an auxiliary task
using the multi-task learning framework and do so as a neural network with a shared doc-
ument encoder with the main coreference resolution task. One benefit of this method is



CHAPTER 5. CONCLUSIONS 73

that it does not require extra dependency trees as input at inference time, thus reducing the
need for external dependency parsers. In the meantime, the structure of constituent parse
trees can also be employed in the self-attention mechanism, although the method may not
be as straightforward as that of employing dependency trees. For example, we could use
the head-finding rules to find the heads of each internal non-terminal node, and then we
can derive the relations between word pairs based on the structure of constituent trees. The
performance of these two potential methods can be compared with our proposed one in
Chapter 4 to find which method is more effective, and we can also explore which method
is more robust under the setting of predicted syntax trees. Furthermore, above mentioned
methods can also extend to other NLP tasks to test their generality.

Discourse-Level Features One drawback of our proposed two methods is that the incor-
porated syntax and semantics are sentence-level features, indicating that inter-sentence in-
formation and document-level features are not utilised. However, as a discourse-level task,
coreference resolution should benefit from document-level information. The discourse rela-
tion captures the relationships between intertwined sentences, where each utterance is con-
sidered as a single Elementary Discourse Unit (EDU), and they are linked through specific
predefined relation edges. It has been shown positive effects on dialogue understanding
like identifying the decisions in multi-party conversations (Bui et al., 2009). As mentioned
in our error analysis in §3.7, our model makes most errors in resolving pronouns, espe-
cially in dialogues and multi-party conversations with frequent speaker switching. Current
neural models often struggle to address the long-range dependency between different ut-
terances (Xu et al., 2020), especially when there are frequent interruptions (e.g., frequent
speaker switching). As a result, we aim to evaluate the impact of incorporating the dis-
course relations for coreference resolution task in the future, especially under the setting of
dialogues and email conversations (Dakle and Moldovan, 2020).

Knowledge-Driven Methods The development of large-scale knowledge graphs, such
as ConceptNet (Speer et al., 2017) and ATOMIC (Sap et al., 2019), allows neural models
to take full advantage of knowledge, typically in the form of triples, for a deeper under-
standing of documents and making better decisions. Zhang et al. (2019b) successfully
incorporated the ConceptNet into a neural pronoun resolution model, but the empirical
results show that the benefits of commonsense knowledge are limited in documents of
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general domains. Another potential direction is to utilise knowledge facts extracted from
input documents. Structural fact-event knowledge graphs, in the form of (subject, predi-
cate, object), capture the relevant concepts of the same entity across multiple sentences.
Recent studies (Huang et al., 2020; Chen and Yang, 2021) have demonstrated its effec-
tiveness on abstractive summarisation through a better understanding of factual details in
input documents. Thus, for both external knowledge graphs and automatically extracted
fact triples from input documents, evaluating their utility for coreference resolution by em-
ploying graph-based methods can be an exciting research direction in the future.
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